forked from krishnaik06/Updated-Langchain
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b4a48cf
commit f102769
Showing
6 changed files
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import streamlit as st | ||
import os | ||
from langchain_groq import ChatGroq | ||
from langchain_openai import OpenAIEmbeddings | ||
from langchain.text_splitter import RecursiveCharacterTextSplitter | ||
from langchain.chains.combine_documents import create_stuff_documents_chain | ||
from langchain_core.prompts import ChatPromptTemplate | ||
from langchain.chains import create_retrieval_chain | ||
from langchain_objectbox.vectorstores import ObjectBox | ||
from langchain_community.document_loaders import PyPDFDirectoryLoader | ||
|
||
from dotenv import load_dotenv | ||
load_dotenv() | ||
|
||
## load the Groq And OpenAI Api Key | ||
os.environ['OPEN_API_KEY']=os.getenv("OPENAI_API_KEY") | ||
groq_api_key=os.getenv('GROQ_API_KEY') | ||
|
||
st.title("Objectbox VectorstoreDB With Llama3 Demo") | ||
|
||
llm=ChatGroq(groq_api_key=groq_api_key, | ||
model_name="Llama3-8b-8192") | ||
|
||
prompt=ChatPromptTemplate.from_template( | ||
""" | ||
Answer the questions based on the provided context only. | ||
Please provide the most accurate response based on the question | ||
<context> | ||
{context} | ||
<context> | ||
Questions:{input} | ||
""" | ||
|
||
) | ||
|
||
|
||
## Vector Enbedding and Objectbox Vectorstore db | ||
|
||
def vector_embedding(): | ||
|
||
if "vectors" not in st.session_state: | ||
st.session_state.embeddings=OpenAIEmbeddings() | ||
st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion | ||
st.session_state.docs=st.session_state.loader.load() ## Documents Loading | ||
st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) | ||
st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) | ||
st.session_state.vectors=ObjectBox.from_documents(st.session_state.final_documents,st.session_state.embeddings,embedding_dimensions=768) | ||
|
||
|
||
input_prompt=st.text_input("Enter Your Question From Documents") | ||
|
||
if st.button("Documents Embedding"): | ||
vector_embedding() | ||
st.write("ObjectBox Database is ready") | ||
|
||
import time | ||
|
||
if input_prompt: | ||
document_chain=create_stuff_documents_chain(llm,prompt) | ||
retriever=st.session_state.vectors.as_retriever() | ||
retrieval_chain=create_retrieval_chain(retriever,document_chain) | ||
start=time.process_time() | ||
|
||
response=retrieval_chain.invoke({'input':input_prompt}) | ||
|
||
print("Response time :",time.process_time()-start) | ||
st.write(response['answer']) | ||
|
||
# With a streamlit expander | ||
with st.expander("Document Similarity Search"): | ||
# Find the relevant chunks | ||
for i, doc in enumerate(response["context"]): | ||
st.write(doc.page_content) | ||
st.write("--------------------------------") | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
import requests | ||
|
||
# Create Chat Session | ||
url = "https://gateway-dev.on-demand.io/chat/v1/sessions" | ||
headers = { "apikey": "FSs5SmWWSaqrstpxZ87v1NrACHnT0ozk" } | ||
body = { "pluginIds": [], "externalUserId": "plugin-1713962163" } | ||
response = requests.post(url, headers=headers, json=body) | ||
chatSession = response.json() | ||
print(chatSession) | ||
session_id = chatSession['chatSession']['id'] | ||
|
||
# Answer Query | ||
url = f"https://gateway-dev.on-demand.io/chat/v1/sessions/{session_id}/query" | ||
headers = { "apikey": "FSs5SmWWSaqrstpxZ87v1NrACHnT0ozk" } | ||
body = { "endpointId": "predefined-openai-gpt4o", "query": "What is the weather in Bangalore", "pluginIds": ["plugin-1713924030"], "responseMode": "sync" } | ||
response = requests.post(url, headers=headers, json=body) | ||
print(response.json()) |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.