Stars
XMap is a fast network scanner designed for performing Internet-wide IPv6 & IPv4 network research scanning.
一款轻量级开源车载领域通信中间件,支持HTTP、MQTT、SOME/IP、SOME/IP-SD等协议以及多种IPC方式
Official Implementation of ICML'23 "Byzantine-Robust Learning on Heterogeneous Data via Gradient Splitting".
2023年最新总结,阿里,腾讯,百度,美团,头条等技术面试题目,以及答案,专家出题人分析汇总。
C++高性能分布式服务器框架,webserver,websocket server,自定义tcp_server(包含日志模块,配置模块,线程模块,协程模块,协程调度模块,io协程调度模块,hook模块,socket模块,bytearray序列化,http模块,TcpServer模块,Websocket模块,Https模块等, Smtp邮件模块, MySQL, SQLite3, ORM,Red…
Autoencoder based intrusion detection system trained and tested with the CICIDS2017 data set.
A Novel Statistical Analysis and Autoencoder Driven Intelligent Intrusion Detection Approach
Build your own Custom RAG Chatbot using Gradio, Langchain and Llama2
A simple Langchain RAG application.
Phi2-Chinese-0.2B 从0开始训练自己的Phi2中文小模型,支持接入langchain加载本地知识库做检索增强生成RAG。Training your own Phi2 small chat model from scratch.
MobileBERT and DistilBERT for extractive summarization
Scripts for fine-tuning Llama2 via SFT and DPO.
A clean implementation of direct preference optimization (DPO) to train the LLaMA 2 model to align with human preferences.
A minimum example of aligning language models with RLHF similar to ChatGPT
Comprehensive toolkit for Reinforcement Learning from Human Feedback (RLHF) training, featuring instruction fine-tuning, reward model training, and support for PPO and DPO algorithms with various c…
MVP for a Retail Investment Advisor Powered by LLMs - CalHacks 2023 Hackathon
In this project, I explored how local LLMs can be used to label data and support analyses. Specifically, I used Llama2 model to automatically categorise my bank transaction data.
[TOG 2024]StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter
KDSS is the framework for knowledge distillation from LLMs
Robust recipes to align language models with human and AI preferences
MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training Pipeline. 训练医疗大模型,实现了包括增量预训练(PT)、有监督微调(SFT)、RLHF、DPO、ORPO、GRPO。
Federated Learning for Intrusion Detection System using the Flower framework and UNSW_NB15 dataset.
This project focuses on detecting IoT botnets using advanced techniques like autoencoders, LSTM-CNN, and DNN. Enhancing security and preventing botnet attacks in the Internet of Things.
IoT Inspector: capturing and analyzing your smart home network traffic
PyTorch & Keras implementation for BraTs (Brain Tumor Segmentation)