Skip to content

auto-wing is a tool that uses LLM to assist automated testing

License

Notifications You must be signed in to change notification settings

Catking233/auto-wing

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

auto-wing

auto-wing is a tool that uses LLM to assist automated testing, give your automated testing wings.

auto-wing是一个利用LLM辅助自动化测试的工具, 为你的自动化测试插上翅膀。

Features

⭐ 支持多种操作:ai_actionai_queryai_assert

⭐ 支持多模型:openaideepseekqwendoubao

⭐ 支持 playwrightselenium

⭐ 方便的和现有自动化项目(pytestunittest)集成。

Install

  • 支持pip安装,python = "^3.9"
pip install autowing

Setting Env

方法一

申请LLM需要的key,在项目的根目录下创建.env文件。推荐qwendeepseek,一是便宜,二是方便。

#.env
AUTOWING_MODEL_PROVIDER=openai
OPENAI_API_KEY==sk-proj-abdefghijklmnopqrstwvwxyz0123456789
#.env
AUTOWING_MODEL_PROVIDER=deepseek
DEEPSEEK_API_KEY=sk-abdefghijklmnopqrstwvwxyz0123456789
#.env
AUTOWING_MODEL_PROVIDER=qwen
DASHSCOPE_API_KEY=sk-abdefghijklmnopqrstwvwxyz0123456789
AUTOWING_MODEL_PROVIDER=doubao
ARK_API_KEY=f61d2846-xxx-xxx-xxxx-xxxxxxxxxxxxx
DOUBAO_MODEL_NAME=ep-20250207200649-xxx

方法二

如果不想使用python-dotenv配置环境变量,可以直接配置环境变量。

export AUTOWING_MODEL_PROVIDER=deepseek
export DEEPSEEK_API_KEY=sk-abdefghijklmnopqrstwvwxyz0123456789

其他LLM模型环境变量同样的方式配置。

Examples

👉 查看 examples

import pytest
from playwright.sync_api import Page, sync_playwright
from autowing.playwright.fixture import create_fixture
from dotenv import load_dotenv


@pytest.fixture(scope="session")
def page():
    """playwright page fixture"""
    # load .env file config
    load_dotenv()
    with sync_playwright() as p:
        browser = p.chromium.launch(headless=False)
        context = browser.new_context()
        page = context.new_page()
        yield page
        context.close()
        browser.close()


@pytest.fixture
def ai(page):
    """ai fixture"""
    ai_fixture = create_fixture()
    return ai_fixture(page)


def test_bing_search(page: Page, ai):
    # 访问必应
    page.goto("https://cn.bing.com")

    # 使用AI执行搜索
    ai.ai_action('搜索输入框输入"playwright"关键字,并回车')
    page.wait_for_timeout(3000)

    # 使用AI查询搜索结果
    items = ai.ai_query('string[], 搜索结果列表中包含"playwright"相关的标题')

    # 验证结果
    assert len(items) > 1

    # 使用AI断言
    assert ai.ai_assert('检查搜索结果列表第一条标题是否包含"playwright"字符串')
  • 运行日志:
> pytest test_playwright_pytest.py -s
================================================= test session starts =================================================
platform win32 -- Python 3.12.3, pytest-8.3.4, pluggy-1.5.0
rootdir: D:\github\seldomQA\auto-wing
configfile: pyproject.toml
plugins: base-url-2.1.0, playwright-0.6.2
collected 1 item

test_playwright_pytest.py 2025-02-04 10:00:30.961 | INFO     | autowing.playwright.fixture:ai_action:88 - 🪽 AI Action: 搜索输入框输入"playwright"关键字,并回车
2025-02-04 10:00:40.070 | INFO     | autowing.playwright.fixture:ai_query:162 - 🪽 AI Query: string[], 搜索结果列表中包 含"playwright"相关的标题
2025-02-04 10:00:48.954 | DEBUG    | autowing.playwright.fixture:ai_query:218 - 📄 Query: ['Playwright 官方文档 | Playwright', 'Playwright - 快速、可靠的端到端测试框架', 'Playwright 中文文档 | Playwright', 'Playwright 入门指南 | Playwright', 'Playwright 测试框架 | Playwright', 'Playwright 教程 | Playwright', 'Playwright 使用指南 | Playwright', 'Playwright 自动化测试工具 | Playwright', 'Playwright 安装与配置 | Playwright', 'Playwright 示例代码 | Playwright']
2025-02-04 10:00:48.954 | INFO     | autowing.playwright.fixture:ai_assert:267 - 🪽 AI Assert: 检查搜索结果列表第一条标 题是否包含"playwright"字符串
.

================================================= 1 passed in 27.99s ==================================================

Prompting Tips

1.提供更详细的描述以及样例

提供详细描述和示例一直是非常有用的提示词技巧。

错误示例 ❌: "搜'耳机'"

正确示例 ✅: "找到搜索框(搜索框的上方应该有区域切换按钮,如 '国内', '国际'),输入'耳机',敲回车"

错误示例 ❌: "断言:外卖服务正在正常运行"

正确示例 ✅: "断言:界面上有个“外卖服务”的板块,并且标识着“正常”"

2.一个 Prompt (指令)只做一件事

尽管 auto-wing 有自动重规划能力,但仍应保持指令简洁。否则,LLM 的输出可能会变得混乱。指令的长度对 token 消耗的影响几乎可以忽略不计。

错误示例 ❌:"点击登录按钮,然后点击注册按钮,在表单中输入'[email protected]'作为邮箱,'test'作为密码,然后点击注册按钮"

正确示例 ✅: 将任务分解为三个步骤:"点击登录按钮" "点击注册按钮" "在表单中输入'[email protected]'作为邮箱,'test'作为密码,然后点击注册按钮"

3.从界面做推断,而不是 DOM 属性或者浏览器状态

所有传递给 LLM 的数据都是截图和元素坐标。DOM和浏览器 对 LLM 来说几乎是不可见的。因此,务必确保你想提取的信息都在截图中有所体现且能被 LLM “看到”。

正确示例 ✅:标题是蓝色的

错误实例 ❌:标题有个 test-id-size 属性

错误实例 ❌:浏览器有两个 tab 开着

错误实例 ❌:异步请求已经结束了

4.中、英文提示词无影响

由于大多数 AI 模型可以理解多种语言,所以请随意用你喜欢的语言撰写提示指令。即使提示语言与页面语言不同,通常也是可行的。

交流

欢迎添加微信,交流和反馈问题。

微信

About

auto-wing is a tool that uses LLM to assist automated testing

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%