Skip to content

Tensorflow implementation of generative adversarial imitation learning

License

Notifications You must be signed in to change notification settings

ChangkunYe/gail-tf

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gail-tf

Tensorflow implementation of Generative Adversarial Imitation Learning (and behavior cloning)

disclaimers: some code is borrowed from @openai/baselines

What's GAIL?

  • model free imtation learning -> low sample efficiency in training time
    • model-based GAIL: End-to-End Differentiable Adversarial Imitation Learning
  • Directly extract policy from demonstrations
  • Remove the RL optimization from the inner loop od inverse RL
  • Some work based on GAIL:
    • Inferring The Latent Structure of Human Decision-Making from Raw Visual Inputs
    • Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets
    • Robust Imitation of Diverse Behaviors

Requirements

  • python==3.5.2
  • mujoco-py==0.5.7
  • tensorflow==1.1.0
  • gym==0.9.3

Run the code

I separate the code into two parts: (1) Sampling expert data, (2) Imitation learning with GAIL/BC

Step 1: Generate expert data

Train the expert policy using PPO/TRPO, from openai/baselines

Ensure that $GAILTF is set to the path to your gail-tf repository, and $ENV_ID is any valid OpenAI gym environment (e.g. Hopper-v1, HalfCheetah-v1, etc.)

Configuration
export GAILTF=/path/to/your/gail-tf
export ENV_ID="Hopper-v1"
export BASELINES_PATH=$GAILTF/gailtf/baselines/ppo1 # use gailtf/baselines/trpo_mpi for TRPO
export SAMPLE_STOCHASTIC="False"            # use True for stochastic sampling
export STOCHASTIC_POLICY="False"            # use True for a stochastic policy
export PYTHONPATH=$GAILTF:$PYTHONPATH       # as mentioned below
cd $GAILTF
Train the expert
python3 $BASELINES_PATH/run_mujoco.py --env_id $ENV_ID

The trained model will save in ./checkpoint, and its precise name will vary based on your optimization method and environment ID. Choose the last checkpoint in the series.

export PATH_TO_CKPT=./checkpoint/trpo.Hopper.0.00/trpo.Hopper.00-900
Sample from the generated expert policy
python3 $BASELINES_PATH/run_mujoco.py --env_id $ENV_ID --task sample_trajectory --sample_stochastic $SAMPLE_STOCHASTIC --load_model_path $PATH_TO_CKPT

This will generate a pickle file that store the expert trajectories in ./XXX.pkl (e.g. deterministic.ppo.Hopper.0.00.pkl)

export PICKLE_PATH=./stochastic.trpo.Hopper.0.00.pkl

Step 2: Imitation learning

Imitation learning via GAIL

python3 main.py --env_id $ENV_ID --expert_path $PICKLE_PATH

Usage:

--env_id:          The environment id
--num_cpu:         Number of CPU available during sampling
--expert_path:     The path to the pickle file generated in the [previous section]()
--traj_limitation: Limitation of the exerpt trajectories
--g_step:          Number of policy optimization steps in each iteration
--d_step:          Number of discriminator optimization steps in each iteration
--num_timesteps:   Number of timesteps to train (limit the number of timesteps to interact with environment)

To view the summary plots in TensorBoard, issue

tensorboard --logdir $GAILTF/log
Evaluate your GAIL agent
python3 main.py --env_id $ENV_ID --task evaluate --stochastic_policy $STOCHASTIC_POLICY --load_model_path $PATH_TO_CKPT --expert_path $PICKLE_PATH

Imitation learning via Behavioral Cloning

python3 main.py --env_id $ENV_ID --algo bc --expert_path $PICKLE_PATH
Evaluate your BC agent
python3 main.py --env_id $ENV_ID --algo bc --task evalaute --stochastic_policy $STOCHASTIC_POLICY --load_model_path $PATH_TO_CKPT --expert_path $PICKLE_PATH

Results

Note: The following hyper-parameter setting is the best that I've tested (simple grid search on setting with 1500 trajectories), just for your information.

The different curves below correspond to different expert size (1000,100,10,5).

  • Hopper-v1 (Average total return of expert policy: 3589)
python3 main.py --env_id Hopper-v1 --expert_path baselines/ppo1/deterministic.ppo.Hopper.0.00.pkl --g_step 3 --adversary_entcoeff 0

  • Walker-v1 (Average total return of expert policy: 4392)
python3 main.py --env_id Walker2d-v1 --expert_path baselines/ppo1/deterministic.ppo.Walker2d.0.00.pkl --g_step 3 --adversary_entcoeff 1e-3

  • HalfCheetah-v1 (Average total return of expert policy: 2110)

For HalfCheetah-v1 and Ant-v1, using behavior cloning is needed:

python3 main.py --env_id HalfCheetah-v1 --expert_path baselines/ppo1/deterministic.ppo.HalfCheetah.0.00.pkl --pretrained True --BC_max_iter 10000 --g_step 3 --adversary_entcoeff 1e-3

You can find more details here, GAIL policy here, and BC policy here

Hacking

We don't have a pip package yet, so you'll need to add this repo to your PYTHONPATH manually.

export PYTHONPATH=/path/to/your/repo/with/gailtf:$PYTHONPATH

TODO

  • Create pip package/setup.py
  • Make style PEP8 compliant
  • Create requirements.txt
  • Depend on openai/baselines directly and modularize modifications
  • openai/robotschool support

TroubleShooting

  • encounter error: Cannot compile MPI programs. Check your configuration!!! or the systme complain about mpi/h
sudo apt install libopenmpi-dev

Reference

  • Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, [arxiv]
  • @openai/imitation
  • @openai/baselines

About

Tensorflow implementation of generative adversarial imitation learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%