Skip to content

An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

Notifications You must be signed in to change notification settings

ChaocunChen/FaceQuality

 
 

Repository files navigation

A Simple Explicit Quality Network for Face Recognition

Face Quality Result

Requirements

  • Pytorch 1.8.1

Training Data

  1. Download MS1Mv2
  2. Extract image files by rec2image.py
  3. Generate the training file list
cd dataset
python generate_file_list.py

Test

  1. Download pretrained model
  2. run test_quality.py
python test_quality.py --backbone backbone.pth --quality quality.path --file test_faces

Training

Training pipeline

  1. Step 1: set config.py, then run python train_feature.py
    ...
    BACKBONE_RESUME_ROOT = ''
    HEAD_RESUME_ROOT = ''
    TRAIN_FILES = './dataset/face_train_ms1mv2.txt'
    BACKBONE_LR = 0.05
    PRETRAINED_BACKBONE = ''
    PRETRAINED_QUALITY = ''
    ...
  1. Step 2: set config.py, then run python train_quality.py
    ...
    BACKBONE_RESUME_ROOT = './backbone_resume.pth'
    HEAD_RESUME_ROOT = './head_resume.pth'
    TRAIN_FILES = './dataset/face_train_ms1mv2.txt'
    BACKBONE_LR = 0.05
    PRETRAINED_BACKBONE = ''
    PRETRAINED_QUALITY = ''
    ...
  1. Step 3: set config.py, then run python train_feature.py
    ...
    BACKBONE_RESUME_ROOT = ''
    HEAD_RESUME_ROOT = ''
    TRAIN_FILES = './dataset/face_train_ms1mv2.txt'
    BACKBONE_LR = 0.05
    PRETRAINED_BACKBONE = ''
    PRETRAINED_QUALITY = ''

    PRETRAINED_BACKBONE = 'pretrained_backbone_resume.pth'
    PRETRAINED_QUALITY = 'pretrained_qulity_resume.pth'
    ...

About

An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%