Skip to content

Commit

Permalink
[Fix] Fix dmlc#1078, dmlc#1077 and add nightly build to readme
Browse files Browse the repository at this point in the history
  • Loading branch information
VoVAllen authored Dec 8, 2019
1 parent fa0ee46 commit a5a052b
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 11 deletions.
19 changes: 10 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ All model examples can be found [here](https://github.com/dmlc/dgl/tree/master/e
A summary of part of the model accuracy and training speed with the Pytorch backend (on Amazon EC2 p3.2x instance (w/ V100 GPU)), as compared with the best open-source implementations:

| Model | Reported <br> Accuracy | DGL <br> Accuracy | Author's training speed (epoch time) | DGL speed (epoch time) | Improvement |
| ----- | ----------------- | ------------ | ------------------------------------ | ---------------------- | ----------- |
| ---------------------------------------------------------------- | ---------------------- | ----------------- | ----------------------------------------------------------------------------- | ---------------------- | ----------- |
| [GCN](https://arxiv.org/abs/1609.02907) | 81.5% | 81.0% | [0.0051s (TF)](https://github.com/tkipf/gcn) | 0.0031s | 1.64x |
| [GAT](https://arxiv.org/abs/1710.10903) | 83.0% | 83.9% | [0.0982s (TF)](https://github.com/PetarV-/GAT) | 0.0113s | 8.69x |
| [SGC](https://arxiv.org/abs/1902.07153) | 81.0% | 81.9% | n/a | 0.0008s | n/a |
Expand All @@ -28,7 +28,7 @@ A summary of part of the model accuracy and training speed with the Pytorch back
| [JTNN](https://arxiv.org/abs/1802.04364) | 96.44% | 96.44% | [1826s (Pytorch)](https://github.com/wengong-jin/icml18-jtnn) | 743s | 2.5x |
| [LGNN](https://arxiv.org/abs/1705.08415) | 94% | 94% | n/a | 1.45s | n/a |
| [DGMG](https://arxiv.org/pdf/1803.03324.pdf) | 84% | 90% | n/a | 238s | n/a |
| [GraphWriter](https://www.aclweb.org/anthology/N19-1238.pdf) | 14.3(BLEU) | 14.31(BLEU) | [1970s (PyTorch)](https://github.com/rikdz/GraphWriter) | 1192s | 1.65x |
| [GraphWriter](https://www.aclweb.org/anthology/N19-1238.pdf) | 14.3(BLEU) | 14.31(BLEU) | [1970s (PyTorch)](https://github.com/rikdz/GraphWriter) | 1192s | 1.65x |

With the MXNet/Gluon backend , we scaled a graph of 50M nodes and 150M edges on a P3.8xlarge instance,
with 160s per epoch, on SSE ([Stochastic Steady-state Embedding](https://www.cc.gatech.edu/~hdai8/pdf/equilibrium_embedding.pdf)),
Expand Down Expand Up @@ -75,13 +75,14 @@ conda install -c dglteam dgl-cuda10.1 # CUDA 10.1

### Using pip

```
pip install dgl # cpu version
pip install dgl-cu90 # CUDA 9.0
pip install dgl-cu92 # CUDA 9.2
pip install dgl-cu100 # CUDA 10.0
pip install dgl-cu101 # CUDA 10.1
```

| | Latest Nightly Build Version | Stable Version |
|-----------|-------------------------------|-------------------------|
| CPU | `pip install --pre dgl` | `pip install dgl` |
| CUDA 9.0 | `pip install --pre dgl-cu90` | `pip install dgl-cu90` |
| CUDA 9.2 | `pip install --pre dgl-cu92` | `pip install dgl-cu92` |
| CUDA 10.0 | `pip install --pre dgl-cu100` | `pip install dgl-cu100` |
| CUDA 10.1 | `pip install --pre dgl-cu101` | `pip install dgl-cu101` |

### From source

Expand Down
4 changes: 2 additions & 2 deletions python/dgl/data/gnn_benckmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def __init__(self, name):

@staticmethod
def load_npz(file_name):
with np.load(file_name) as loader:
with np.load(file_name, allow_pickle=True) as loader:
loader = dict(loader)
num_nodes = loader['adj_shape'][0]
adj_matrix = sp.csr_matrix((loader['adj_data'], loader['adj_indices'], loader['adj_indptr']),
Expand Down Expand Up @@ -116,7 +116,7 @@ class AmazonCoBuy(GNNBenchmarkDataset):
Parameters
---------------
name: str
Name of the dataset, has to be 'computer' or 'photo'
Name of the dataset, has to be 'computers' or 'photo'
"""
_url = {
Expand Down

0 comments on commit a5a052b

Please sign in to comment.