Skip to content

A tool for visual pixel's reception-field in Convolutional Neural Network.

License

Notifications You must be signed in to change notification settings

CheungXu/reception_field_visualization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

reception_field_visualization

A visual tool for CNN feature map pixel reception field: Constructing the net by operators just like in deep-learning framewok. Then use Visualizer to generate the reception-field image of layer you wanted. A simple example can be find in main function.

Prerequisites

  • Python
  • OpenCV (pip install opencv-python)

Operator Supported

  • conv(input_, kernel=3, stride=1) : Standred Convolution Layer.
  • deconv(input_, kernel=3, stride=1) : Standred Deconvolution Layer.
  • dilated_conv(input_, rate=1) : Dilated Convolution Layer.

Visualizer

  • rect_size: The Pixel num of Rect in Image.
  • line_width: The Width of Separator Lines.
  • visual(input_): Generate Visible Images and Show.
  • save(path): Save Visible Images in 'path'.
  • show(): Show Visible Images.

Visualization Result

Convolution Layer (kernel = 3, stride = 1)






Dilated Convolution Layer (rate = [1, 2, 5, 1, 2, 7])






TODO

  • User-defined dilated_conv kernel size.
  • Wider Painting Color Range.
  • Real Reception_field Size Compute API.
  • Real Pixel Visual Image.(Bug fix)

About

A tool for visual pixel's reception-field in Convolutional Neural Network.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages