answer/
- the neural network that combines all the solvers;essential_terms/
- the model that assigns essential scores for each term in a question;multinli/
- the neural network trained on the MultiNLI dataset;nlp_inference/
- the neural network trained on the SNLI dataset;scitail/
- the neural network trained on the SciTail dataset;rephrase/
- the module that transforms questions into affirmative sentences;qa/
- pre-trained neural networks on the SQuAD v1 dataset;protos/
- protocol buffer definitions (for passing data around);wikipedia_indexer/
- code for indexing Wikipedia dumps and science book collection. It also includes the IR solvers and candidate context extraction tool.
--------------------------------------------------------------------------------
Language Files Lines Blank Comment Code
--------------------------------------------------------------------------------
Java 63 19577 1807 2480 15290
Python 139 20634 2809 4141 13684
XML 1 197 5 0 192
Protobuf 4 118 25 2 91
Markdown 2 104 29 0 75
Bourne Shell 2 50 9 6 35
Makefile 2 47 17 0 30
--------------------------------------------------------------------------------
Total 213 40727 4701 6629 29397
--------------------------------------------------------------------------------
Collected using cgag/loc
Dataset | Accuracy |
---|---|
ARC-Easy Test | 60.943% |
ARC-Challenge Test | 26.706% |
Please contact [email protected]
if you want to build and run the model. There are a lot of dependencies (both software and data sources) that need to be installed.
Improving Retrieval-Based Question Answering with Deep Inference Models