-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtGD_pstXRay.py
73 lines (69 loc) · 3.4 KB
/
tGD_pstXRay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import sys
import numpy as np
import pandas as pd
import tGD_aux as aux
from glob import glob
import compress_pickle as pkl
import MoNeT_MGDrivE as monet
from datetime import datetime
import matplotlib.pyplot as plt
# import re
(thi, tho, QNT) = (.5, .5, '50')
(USR, DRV, AOI) = (sys.argv[1], sys.argv[2], sys.argv[3])
# (USR, DRV, AOI) = ('dsk', 'tGD', 'HLT')
X_RAN = [0, 5*365/3]
EXPS = ('000', )
for exp in EXPS:
# Select path ------------------------------------------------------------
(PT_ROT, PT_IMG, PT_DTA, PT_PRE, PT_OUT, PT_MTR) = aux.selectPath(USR, DRV, exp)
PT_IMG = PT_IMG+'xRay/'
monet.makeFolder(PT_IMG)
tS = datetime.now()
aux.printExperimentHead(PT_ROT, PT_IMG, PT_MTR, tS, 'X-Ray '+AOI)
# Load file --------------------------------------------------------------
fNames = glob(PT_OUT+'*{}*.npy'.format(AOI))
xpNumS = str(len(fNames)).zfill(4)
for (i, fName) in enumerate(fNames):
xpNumCS = str(i + 1).zfill(4)
print('* Exporting {}/{}'.format(xpNumCS, xpNumS), end='\r')
# Name formatting -> tuple--------------------------------------------
repsRatios = np.load(fName)
fList = fName.split('/')[-1].split('-')[0].split('_')[1:]
fList.append(fName.split('/')[-1].split('-')[1].split('_')[1])
fKeys = tuple(list(map(int, fList)))
# fList = re.split(r'[a-zA-Z_/.-]+', fName)[9:16]
# AOI = re.split(r'[0-9_./-]+', fName)[18]
# Select cmap --------------------------------------------------------
(scalers, HD_DEP, IND_RAN, palette) = aux.selectDepVars('TTI', AOI)
cmap = palette.reversed()
# load TTI and TTO ---------------------------------------------------
ttiR = pkl.load(PT_MTR+'{}_TTI_{}_mlr.bz'.format(AOI, QNT))
tti = ttiR[fKeys][int(thi*100)]
ttoR = pkl.load(PT_MTR+'{}_TTO_{}_mlr.bz'.format(AOI, QNT))
tto = ttoR[fKeys][int(tho*100)]
# load Summary.csv TTI and TTO ----------------------------------------
summ_ttiR = pd.read_csv(PT_MTR+'{}_TTI_{}_qnt.csv'.format(AOI, QNT))
summ_tti = ttiR[fKeys][int(thi*100)]
summ_ttoR = pd.read_csv(PT_MTR+'{}_TTO_{}_qnt.csv'.format(AOI, QNT))
summ_tto = ttoR[fKeys][int(tho*100)]
# Plotting-------------------------------------------------------------
(fig, ax) = plt.subplots(nrows=1, ncols=1)
ax.imshow(repsRatios, cmap=cmap)
# add TTI-------------------------------------------------------------
[plt.axvline(i, color='#f8f7ff', alpha=.65, lw=0.175, ls='-.') for i in tti]
# add TTO-------------------------------------------------------------
[plt.axvline(j, color='cyan', alpha=.75, lw=0.2, ls='dotted') for j in tto]
# TTO and TTI from Summary.csv
[plt.axvline(i, color='#3DFE70', alpha=.9, lw=0.3) for i in summ_tti]
[plt.axvline(j, color='#3DFE70', alpha=.9, lw=0.3) for j in summ_tto]
# Save the figure------------------------------------------------------
outName = fName.split('/')[-1].split('.')[0][:-4]
plt.xlim(X_RAN)
ax.axes.xaxis.set_ticklabels([])
ax.axes.yaxis.set_ticklabels([])
ax.axes.xaxis.set_visible(False)
ax.axes.yaxis.set_visible(False)
ax.xaxis.set_tick_params(size=0)
ax.yaxis.set_tick_params(size=0)
plt.savefig(PT_IMG+outName + '.png', bbox_inches='tight', pad_inches=0.01, dpi=500)
plt.close("all")