This is a python/mxnet implementation of a very simple CNN that predicts the head pose
num of params < 100K
CNN model:
conv1 3*3*32,(2,2),relu
conv2 3*3*32,(2,2),relu
conv3 3*3*64,(2,2),relu
conv4 3*3*64,(2,2),relu
fc1 128,relu
fc2 2,tanh
dataset:
1.http://www-prima.inrialpes.fr/perso/Gourier/Faces/HPDatabase.html
2.[Biwi Kinect Head Pose Database](http://data.vision.ee.ethz.ch/cvl/gfanelli/kinect_head_pose_db.tgz)
-opencv
only tested on 2.4.9.1
-mxnet
only tested on 0.7.0
-mtcnn
I use https://github.com/pangyupo/mxnet_mtcnn_face_detection to do face cropping and alignment
padding = 0.27,desired_size = 64
run:
python main.py
examples from validation set:(green as label,red as prediction)