Skip to content

Neural network potentials based on graph neural networks and equivariant transformers

License

Notifications You must be signed in to change notification settings

ClementiGroup/torchmd-net

 
 

Repository files navigation

TorchMD-net

TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials. It offers an efficient and fast implementation and it is integrated in GPU-accelerated molecular dynamics code like ACEMD and OpenMM.

Installation

Create a new conda environment using Python 3.8 via

conda create --name torchmd python=3.8
conda activate torchmd

Install PyTorch

Then, install PyTorch according to your hardware specifications (more information here), e.g. for CUDA 11.1 and the most recent version of PyTorch use

conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia

Install PyTorch Geometric

Install pytorch-geometric with its dependencies through

conda install pytorch-geometric -c rusty1s -c conda-forge

To install PyTorch Geometric via pip or for PyTorch < 1.8, see https://github.com/rusty1s/pytorch_geometric#installation.

Install TorchMD-Net

Download and install the torchmd-net repository via

git clone https://github.com/compsciencelab/torchmd-net.git
pip install -e torchmd-net/

Usage

Specifying training arguments can either be done via a configuration yaml file or through command line arguments directly. An example configuration file for a TorchMD Graph Network can be found at examples/graph-network.yaml. For an example on how to train the network on the QM9 dataset, see examples/train_GN_QM9.sh. GPUs can be selected by their index by listing the device IDs (coming from nvidia-smi) in the CUDA_VISIBLE_DEVICES environment variable. Otherwise, the argument --ngpus can be used to select the number of GPUs to train on (-1 uses all available GPUs or the ones specified in CUDA_VISIBLE_DEVICES).

mkdir output
CUDA_VISIBLE_DEVICES=0 python torchmd-net/scripts/torchmd_train.py --conf torchmd-net/examples/graph-network.yaml --dataset QM9 --log-dir output/

Creating a new dataset

If you want to train on custom data, first have a look at torchmdnet.datasets.Custom, which provides functionalities for loading a NumPy dataset consisting of atom types and coordinates, as well as energies, forces or both as the labels. Alternatively, you can implement a custom class according to the torch-geometric way of implementing a dataset. That is, derive the Dataset or InMemoryDataset class and implement the necessary functions (more info here). The dataset must return torch-geometric Data objects, containing at least the keys z (atom types) and pos (atomic coordinates), as well as y (label), dy (derivative of the label w.r.t atom coordinates) or both.

Custom prior models

In addition to implementing a custom dataset class, it is also possible to add a custom prior model to the model. This can be done by implementing a new prior model class in torchmdnet.priors and adding the argument --prior-model <PriorModelName>. As an example, have a look at torchmdnet.priors.Atomref.

Multi-Node Training

Currently does not work with the most recent PyTorch Lightning version. Tested up to pytorch-lightning==1.2.10

In order to train models on multiple nodes some environment variables have to be set, which provide all necessary information to PyTorch Lightning. In the following we provide an example bash script to start training on two machines with two GPUs each. The script has to be started once on each node. Once train.py is started on all nodes, a network connection between the nodes will be established using NCCL.

In addition to the environment variables the argument --num-nodes has to be specified with the number of nodes involved during training.

export NODE_RANK=0
export MASTER_ADDR=hostname1
export MASTER_PORT=12910

mkdir -p output
CUDA_VISIBLE_DEVICES=0,1 python torchmd-net/scripts/train.py --conf torchmd-net/examples/graph-network.yaml --num-nodes 2 --log-dir output/
  • NODE_RANK : Integer indicating the node index. Must be 0 for the main node and incremented by one for each additional node.
  • MASTER_ADDR : Hostname or IP address of the main node. The same for all involved nodes.
  • MASTER_PORT : A free network port for communication between nodes. PyTorch Lightning suggests port 12910 as a default.

Known Limitations

  • Due to the way PyTorch Lightning calculates the number of required DDP processes, all nodes must use the same number of GPUs. Otherwise training will not start or crash.
  • We observe a 50x decrease in performance when mixing nodes with different GPU architectures (tested with RTX 2080 Ti and RTX 3090).

About

Neural network potentials based on graph neural networks and equivariant transformers

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%