Skip to content

ClickHouse/ch-go

Folders and files

NameName
Last commit message
Last commit date
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ch

Low level TCP ClickHouse client and protocol implementation in Go. Designed for very fast data block streaming with low network, cpu and memory overhead.

NB: No pooling, reconnects and not goroutine-safe by default, only single connection. Use clickhouse-go for high-level database/sql-compatible client, pooling for ch-go is available as chpool package.

ClickHouse is an open-source, high performance columnar OLAP database management system for real-time analytics using SQL.

go get github.com/ClickHouse/ch-go@latest

Example

package main

import (
  "context"
  "fmt"

  "github.com/ClickHouse/ch-go"
  "github.com/ClickHouse/ch-go/proto"
)

func main() {
  ctx := context.Background()
  c, err := ch.Dial(ctx, ch.Options{Address: "localhost:9000"})
  if err != nil {
    panic(err)
  }
  var (
    numbers int
    data    proto.ColUInt64
  )
  if err := c.Do(ctx, ch.Query{
    Body: "SELECT number FROM system.numbers LIMIT 500000000",
    Result: proto.Results{
      {Name: "number", Data: &data},
    },
    // OnResult will be called on next received data block.
    OnResult: func(ctx context.Context, b proto.Block) error {
      numbers += len(data)
      return nil
    },
  }); err != nil {
    panic(err)
  }
  fmt.Println("numbers:", numbers)
}
393ms 0.5B rows  4GB  10GB/s 1 job
874ms 2.0B rows 16GB  18GB/s 4 jobs

Results

To stream query results, set Result and OnResult fields of Query. The OnResult will be called after Result is filled with received data block.

The OnResult is optional, but query will fail if more than single block is received, so it is ok to solely set the Result if only one row is expected.

Automatic result inference

var result proto.Results
q := ch.Query{
  Body:   "SELECT * FROM table",
  Result: result.Auto(),
}

Single result with column name inference

var res proto.ColBool
q := ch.Query{
  Body:   "SELECT v FROM test_table",
  Result: proto.ResultColumn{Data: &res},
}

Writing data

See examples/insert.

For table

CREATE TABLE test_table_insert
(
    ts                DateTime64(9),
    severity_text     Enum8('INFO'=1, 'DEBUG'=2),
    severity_number   UInt8,
    body              String,
    name              String,
    arr               Array(String)
) ENGINE = Memory

We prepare data block for insertion as follows:

var (
	body      proto.ColStr
	name      proto.ColStr
	sevText   proto.ColEnum
	sevNumber proto.ColUInt8

	ts  = new(proto.ColDateTime64).WithPrecision(proto.PrecisionNano) // DateTime64(9)
	arr = new(proto.ColStr).Array()                                   // Array(String)
	now = time.Date(2010, 1, 1, 10, 22, 33, 345678, time.UTC)
)

// Append 10 rows to initial data block.
for i := 0; i < 10; i++ {
	body.AppendBytes([]byte("Hello"))
	ts.Append(now)
	name.Append("name")
	sevText.Append("INFO")
	sevNumber.Append(10)
	arr.Append([]string{"foo", "bar", "baz"})
}

input := proto.Input{
	{Name: "ts", Data: ts},
	{Name: "severity_text", Data: &sevText},
	{Name: "severity_number", Data: sevNumber},
	{Name: "body", Data: body},
	{Name: "name", Data: name},
	{Name: "arr", Data: arr},
}

Single data block

if err := conn.Do(ctx, ch.Query{
	// Or "INSERT INTO test_table_insert (ts, severity_text, severity_number, body, name, arr) VALUES"
	// Or input.Into("test_table_insert")
	Body: "INSERT INTO test_table_insert VALUES",
	Input: input,
}); err != nil {
	panic(err)
}

Stream data

// Stream data to ClickHouse server in multiple data blocks.
var blocks int
if err := conn.Do(ctx, ch.Query{
	Body:  input.Into("test_table_insert"), // helper that generates INSERT INTO query with all columns
	Input: input,

	// OnInput is called to prepare Input data before encoding and sending
	// to ClickHouse server.
	OnInput: func(ctx context.Context) error {
		// On OnInput call, you should fill the input data.
		//
		// NB: You should reset the input columns, they are
		// not reset automatically.
		//
		// That is, we are re-using the same input columns and
		// if we will return nil without doing anything, data will be
		// just duplicated.

		input.Reset() // calls "Reset" on each column

		if blocks >= 10 {
			// Stop streaming.
			//
			// This will also write tailing input data if any,
			// but we just reset the input, so it is currently blank.
			return io.EOF
		}

		// Append new values:
		for i := 0; i < 10; i++ {
			body.AppendBytes([]byte("Hello"))
			ts.Append(now)
			name.Append("name")
			sevText.Append("DEBUG")
			sevNumber.Append(10)
			arr.Append([]string{"foo", "bar", "baz"})
		}

		// Data will be encoded and sent to ClickHouse server after returning nil.
		// The Do method will return error if any.
		blocks++
		return nil
	},
}); err != nil {
	panic(err)
}

Writing dumps in Native format

You can use ch-go to write ClickHouse dumps in Native format:

The most efficient format. Data is written and read by blocks in binary format. For each block, the number of rows, number of columns, column names and types, and parts of columns in this block are recorded one after another. In other words, this format is “columnar” – it does not convert columns to rows. This is the format used in the native interface for interaction between servers, for using the command-line client, and for C++ clients.

See ./internal/cmd/ch-native-dump for more sophisticated example.

Example:

var (
    colK proto.ColInt64
    colV proto.ColInt64
)
// Generate some data.
for i := 0; i < 100; i++ {
    colK.Append(int64(i))
    colV.Append(int64(i) + 1000)
}
// Write data to buffer.
var buf proto.Buffer
input := proto.Input{
    {"k", colK},
    {"v", colV},
}
b := proto.Block{
    Rows:    colK.Rows(),
    Columns: len(input),
}
// Note that we are using version 54451, proto.Version will fail.
if err := b.EncodeRawBlock(&buf, 54451, input); err != nil {
    panic(err)
}

// You can write buf.Buf to io.Writer, e.g. os.Stdout or file.
var out bytes.Buffer
_, _ = out.Write(buf.Buf)

// You can encode multiple buffers in sequence.
//
// To do this, reset buf and all columns, append new values
// to columns and call EncodeRawBlock again.
buf.Reset()
colK.Reset()
colV.Reset()

Features

  • OpenTelemetry support
  • No reflection or interface{}
  • Generics (go1.18) for Array[T], LowCardinaliy[T], Map[K, V], Nullable[T]
  • Reading or writing ClickHouse dumps in Native format
  • Column-oriented design that operates directly with blocks of data
    • Dramatically more efficient
    • Up to 100x faster than row-first design around sql
    • Up to 700x faster than HTTP API
    • Low memory overhead (data blocks are slices, i.e. continuous memory)
    • Highly efficient input and output block streaming
    • As close to ClickHouse as possible
  • Structured query execution telemetry streaming
  • LZ4, ZSTD or None (just checksums for integrity check) compression
  • External data support
  • Rigorously tested
    • Windows, Mac, Linux (also x86)
    • Unit tests for encoding and decoding
      • ClickHouse Server in Go for faster tests
      • Golden files for all packets, columns
      • Both server and client structures
      • Ensuring that partial read leads to failure
    • End-to-end tests on multiple LTS and stable versions
    • Fuzzing

Supported types

  • UInt8, UInt16, UInt32, UInt64, UInt128, UInt256
  • Int8, Int16, Int32, Int64, Int128, Int256
  • Date, Date32, DateTime, DateTime64
  • Decimal32, Decimal64, Decimal128, Decimal256 (only low-level raw values)
  • IPv4, IPv6
  • String, FixedString(N)
  • UUID
  • Array(T)
  • Enum8, Enum16
  • LowCardinality(T)
  • Map(K, V)
  • Bool
  • Tuple(T1, T2, ..., Tn)
  • Nullable(T)
  • Point
  • Nothing, Interval

Enums

You can use automatic enum inference in proto.ColEnum, this will come with some performance penalty.

To use proto.ColEnum8 and proto.ColEnum16, you need to explicitly provide DDL for them via proto.Wrap:

var v proto.ColEnum8

const ddl = `'Foo'=1, 'Bar'=2, 'Baz'=3`
input := []proto.InputColumn{
  {Name: "v", Data: proto.Wrap(&v, ddl)},
}

Generics

Most columns implement proto.ColumnOf[T] generic constraint:

type ColumnOf[T any] interface {
	Column
	Append(v T)
	AppendArr(vs []T)
	Row(i int) T
}

For example, ColStr (and ColStr.LowCardinality) implements ColumnOf[string]. Same for arrays: new(proto.ColStr).Array() implements ColumnOf[[]string], column of []string values.

Array

Generic for Array(T)

// Array(String)
arr := proto.NewArray[string](new(proto.ColStr))
// Or
arr := new(proto.ColStr).Array()
q := ch.Query{
  Body:   "SELECT ['foo', 'bar', 'baz']::Array(String) as v",
  Result: arr.Results("v"),
}
// Do ...
arr.Row(0) // ["foo", "bar", "baz"]

Dumps

Reading

Use proto.Block.DecodeRawBlock on proto.NewReader:

func TestDump(t *testing.T) {
	// Testing decoding of Native format dump.
	//
	// CREATE TABLE test_dump (id Int8, v String)
	//   ENGINE = MergeTree()
	// ORDER BY id;
	//
	// SELECT * FROM test_dump
	//   ORDER BY id
	// INTO OUTFILE 'test_dump_native.raw' FORMAT Native;
	data, err := os.ReadFile(filepath.Join("_testdata", "test_dump_native.raw"))
	require.NoError(t, err)
	var (
		dec    proto.Block
		ids    proto.ColInt8
		values proto.ColStr
	)
	require.NoError(t, dec.DecodeRawBlock(
		proto.NewReader(bytes.NewReader(data)),
		proto.Results{
			{Name: "id", Data: &ids},
			{Name: "v", Data: &values},
		}),
	)
}

Writing

Use proto.Block.EncodeRawBlock with version 54451 on proto.Buffer with Rows and Columns set:

func TestLocalNativeDump(t *testing.T) {
	ctx := context.Background()
	// Testing clickhouse-local.
	var v proto.ColStr
	for _, s := range data {
		v.Append(s)
	}
	buf := new(proto.Buffer)
	b := proto.Block{Rows: 2, Columns: 2}
	require.NoError(t, b.EncodeRawBlock(buf, 54451, []proto.InputColumn{
		{Name: "title", Data: v},
		{Name: "data", Data: proto.ColInt64{1, 2}},
	}), "encode")

	dir := t.TempDir()
	inFile := filepath.Join(dir, "data.native")
	require.NoError(t, os.WriteFile(inFile, buf.Buf, 0600), "write file")

	cmd := exec.Command("clickhouse-local", "local",
		"--logger.console",
		"--log-level", "trace",
		"--file", inFile,
		"--input-format", "Native",
		"--output-format", "JSON",
		"--query", "SELECT * FROM table",
	)
	out := new(bytes.Buffer)
	errOut := new(bytes.Buffer)
	cmd.Stdout = out
	cmd.Stderr = errOut

	t.Log(cmd.Args)
	require.NoError(t, cmd.Run(), "run: %s", errOut)
	t.Log(errOut)

	v := struct {
		Rows int `json:"rows"`
		Data []struct {
			Title string `json:"title"`
			Data  int    `json:"data,string"`
		}
	}{}
	require.NoError(t, json.Unmarshal(out.Bytes(), &v), "json")
	assert.Equal(t, 2, v.Rows)
	if assert.Len(t, v.Data, 2) {
		for i, r := range []struct {
			Title string `json:"title"`
			Data  int    `json:"data,string"`
		}{
			{"Foo", 1},
			{"Bar", 2},
		} {
			assert.Equal(t, r, v.Data[i])
		}
	}
}

TODO

  • Types
    • Decimal(P, S) API
    • JSON
    • SimpleAggregateFunction
    • AggregateFunction
    • Nothing
    • Interval
    • Nested
    • Geo types
      • Point
      • Ring
      • Polygon
      • MultiPolygon
  • Improved i/o timeout handling for reading packets from server
    • Close connection on context cancellation in all cases
    • Ensure that reads can't block forever

Reference

License

Apache License 2.0