Skip to content

Commit

Permalink
add and modify some arch and ctr paper
Browse files Browse the repository at this point in the history
  • Loading branch information
wzhe06 committed Jul 14, 2018
1 parent 6110c30 commit e77a207
Show file tree
Hide file tree
Showing 6 changed files with 5 additions and 3 deletions.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
8 changes: 5 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,15 +34,14 @@ Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给
CTR预估模型相关问题,作为计算广告的核心,CTR预估永远是研究的热点,下面每一篇都是非常流行的文章,推荐逐一精读
* [Deep Crossing- Web-Scale Modeling without Manually Crafted Combinatorial Features.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Crossing-%20Web-Scale%20Modeling%20without%20Manually%20Crafted%20Combinatorial%20Features.pdf) <br />
* [Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
* [[FNN]Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BFNN%5DDeep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
* [Entire Space Multi-Task Model_ An Effective Approach for Estimating Post-Click Conversion Rate.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Entire%20Space%20Multi-Task%20Model_%20An%20Effective%20Approach%20for%20Estimating%20Post-Click%20Conversion%20Rate.pdf) <br />
* [Deep Learning over Multi-field Categorical Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Learning%20over%20Multi-field%20Categorical%20Data.pdf) <br />
张伟楠博士的论文,提出了 FNN 模型,类似 Wide & Deep 的 Deep 部分,亮点在于用 FM 预训练的隐向量初始化 embedding 层
* [Deep Interest Network for Click-Through Rate Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Deep%20Interest%20Network%20for%20Click-Through%20Rate%20Prediction.pdf) <br />
* [Product-based Neural Networks for User Response Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Product-based%20Neural%20Networks%20for%20User%20Response%20Prediction.pdf) <br />
张伟楠博士的另外一篇论文,提出了 PNN 模型,在 FNN 基础上对特征的隐向量进行了 inner product 作为新特征
* [Ad Click Prediction a View from the Trenches.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Ad%20Click%20Prediction%20a%20View%20from%20the%20Trenches.pdf) <br />
Google大名鼎鼎的用FTRL解决CTR在线预估的工程文章,非常经典。
* [DeepFM- A Factorization-Machine based Neural Network for CTR Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/DeepFM-%20A%20Factorization-Machine%20based%20Neural%20Network%20for%20CTR%20Prediction.pdf) <br />
* [[DeepFM]- A Factorization-Machine based Neural Network for CTR Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/%5BDeepFM%5D-%20A%20Factorization-Machine%20based%20Neural%20Network%20for%20CTR%20Prediction.pdf) <br />
* [Logistic Regression in Rare Events Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Logistic%20Regression%20in%20Rare%20Events%20Data.pdf) <br />
样本稀少情况下的LR模型训练,讲的比较细
* [Learning Deep Structured Semantic Models for Web Search using Clickthrough Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Deep%20Structured%20Semantic%20Models%20for%20Web%20Search%20using%20Clickthrough%20Data.pdf) <br />
Expand Down Expand Up @@ -129,14 +128,17 @@ PID控制的经典教程
### Computational Advertising Architect
广告系统的架构问题
* [Parameter Server for Distributed Machine Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Parameter%20Server%20for%20Distributed%20Machine%20Learning.pdf) <br />
* [[TensorFlow Whitepaper]TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%5BTensorFlow%20Whitepaper%5DTensorFlow-%20Large-Scale%20Machine%20Learning%20on%20Heterogeneous%20Distributed%20Systems.pdf) <br />
* [大数据下的广告排序技术及实践.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%E5%A4%A7%E6%95%B0%E6%8D%AE%E4%B8%8B%E7%9A%84%E5%B9%BF%E5%91%8A%E6%8E%92%E5%BA%8F%E6%8A%80%E6%9C%AF%E5%8F%8A%E5%AE%9E%E8%B7%B5.pdf) <br />
阿里妈妈的一篇广告排序问题的ppt,模型、训练、评估都有涉及,很有工程价值
* [美团机器学习 吃喝玩乐中的算法问题.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%E7%BE%8E%E5%9B%A2%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%20%E5%90%83%E5%96%9D%E7%8E%A9%E4%B9%90%E4%B8%AD%E7%9A%84%E7%AE%97%E6%B3%95%E9%97%AE%E9%A2%98.pdf) <br />
美团王栋博士的一篇关于美团机器学习相关问题的介绍,介绍的比较全但比较粗浅,可以借此了解美团的一些机器学习问题
* [Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Display%20Advertising%20with%20Real-Time%20Bidding%20%28RTB%29%20and%20Behavioural%20Targeting.pdf) <br />
张伟楠博士的RTB过程所有相关算法的书,全而精,非常棒
* [A Comparison of Distributed Machine Learning Platforms.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/A%20Comparison%20of%20Distributed%20Machine%20Learning%20Platforms.pdf) <br />
* [Efficient Query Evaluation using a Two-Level Retrieval Process.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Efficient%20Query%20Evaluation%20using%20a%20Two-Level%20Retrieval%20Process.pdf) <br />
搜索广告中经典的搜索算法 Wand(Weak AND)
* [[TensorFlow Whitepaper]TensorFlow- A System for Large-Scale Machine Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%5BTensorFlow%20Whitepaper%5DTensorFlow-%20A%20System%20for%20Large-Scale%20Machine%20Learning.pdf) <br />
* [Scaling Distributed Machine Learning with the Parameter Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Scaling%20Distributed%20Machine%20Learning%20with%20the%20Parameter%20Server.pdf) <br />
* [Overlapping Experiment Infrastructure More, Better, Faster Experimentation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Overlapping%20Experiment%20Infrastructure%20More%2C%20Better%2C%20Faster%20Experimentation.pdf) <br />
Google 一篇关于 A/B 测试框架的论文,涉及到如何切分流量以同时进行多个 A/B 测试,工程性很强
Expand Down

0 comments on commit e77a207

Please sign in to comment.