Skip to content

Commit

Permalink
readme.md
Browse files Browse the repository at this point in the history
  • Loading branch information
920232796 committed Aug 18, 2021
1 parent 99747e0 commit b901121
Showing 1 changed file with 5 additions and 4 deletions.
9 changes: 5 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,17 +62,18 @@ pytorch实现bert做seq2seq任务,使用unilm方案。如果喜欢的话欢迎
1. 下载想训练的数据集,可以专门建个corpus文件夹存放。
2. 使用roberta模型,模型和字典文件需要去 https://drive.google.com/file/d/1iNeYFhCBJWeUsIlnW_2K6SMwXkM4gLb_/view 这里下载。 具体可以参考这个github仓库~ https://github.com/ymcui/Chinese-BERT-wwm
3. 如果使用普通的bert模型,下载bert中文预训练权重 "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", 下载bert中文字典 "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt".
4. 去example文件夹下面运行对应的*_train.py文件,针对不同任务,运行不同train.py文件,需要修改输入输出数据的结构,然后进行训练。具体可以看examples里面的各种例子~
4. 如果使用nezha模型,字典权重位置(目前只支持base):nezha-base模型下载:链接: https://pan.baidu.com/s/1Z0SJbISsKzAgs0lT9hFyZQ 提取码: 4awe
5. 去example文件夹下面运行对应的*_train.py文件,针对不同任务,运行不同train.py文件,需要修改输入输出数据的结构,然后进行训练。具体可以看examples里面的各种例子~
### 一些函数解释
#### def load_bert(word2ix, model_name="roberta", model_class="seq2seq")
加载bert模型,model_name参数指定了用哪种bert,目前支持bert和roberta;model_class指定了使用bert做哪种任务,seq2seq表示生成任务,cls表示文本分类任务......
加载bert模型,model_name参数指定了用哪种bert,目前支持bert、roberta、nezha;model_class指定了使用bert做哪种任务,seq2seq表示生成任务,cls表示文本分类任务......
#### model.load_pretrain_params(pretrain_model_path)
加载bert模型参数,注意,只是加载编码器的参数,也就是从网上下载好的预训练模型的参数;例如seq2seq模型包括了bert模型的参数+全连接层,此函数只是加载第一部分参数。
#### def model.load_all_params(recent_model_path)
加载全部模型参数,当你训练了部分时间,保存了模型以后,通过此函数便可以加载上次模型训练结果,继续训练
加载全部模型参数,当你训练了部分时间,保存了模型以后,通过此函数便可以加载上次模型训练结果,继续训练或者进行测试

想看各种文章,可以去我网站~ http://www.blog.zhxing.online/#/ 搜索写诗或者对联或者NER或者新闻摘要文本分类即可找到对应文章。
多谢支持。另外,网站上面还有一些介绍unilm论文和特殊的mask如何实现的文章,可以去网站里搜索一下。http://www.blog.zhxing.online/#/ 搜索unilm 即可。
多谢支持。

### 更新记录

Expand Down

0 comments on commit b901121

Please sign in to comment.