Skip to content

DQiaole/FlowDiffusion_pytorch

Repository files navigation

FlowDiffusion_pytorch

This repo contains all codes and models of our technique report open DDVM, including an unofficial pytorch implementation of DDVM.

Results

AF-pretraining:

Pretraining Network Iteration Sintel.clean Sintel.final KITTI KITTI Fl-all
Paper Palette-style Efficient U-Net Unknow 2.04 2.55 4.47 16.59%
This repo From the Scratch Efficient U-Net 305k 2.96 3.97 6.21 20.38%
This repo From the Scratch Efficient U-Net 900k 2.77 3.76 5.44 18.57%
This repo From the Scratch Efficient U-Net + Corr. Volume 305k 2.98 3.85 5.53 19.04%

Requirements

conda create --name ddvm
conda activate ddvm
pip install -r requirement.txt

Models

We provide pretrained models on the releases page. The default path of the models for evaluation is:

├── check_points
    ├── autoflow-ImagenUnet/pipeline-900000
    ├── autoflow-CorrUnet/pipeline-305000

Data Preparation

To evaluate/train our model, you will need to download the required datasets.

By default set_up_dataset.py will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets folder

├── datasets
    ├── Sintel
        ├── test
        ├── training
    ├── KITTI
        ├── testing
        ├── training
        ├── devkit
    ├── AutoFlow

Training

accelerate config
# Train ImagenUnet
accelerate launch --num_processes 8 train_flow_prediction.py --stage 'autoflow' --train_batch_size 16 --image_size 320 448 --dataloader_num_workers 16 --num_steps 1000000 --save_images_steps 500 --gradient_accumulation_steps 1 --lr_warmup_steps 10000 --use_ema --mixed_precision 'bf16' --prediction_type 'sample' --ddpm_num_steps 64 --checkpointing_steps 10000 --checkpoints_total_limit 5 --output_dir "check_points/autoflow-ImagenUnet" --max_flow 400 --learning_rate 1e-4 --adam_weight_decay 0.0001 --it_aug --add_gaussian_noise --normalize_range --lr_scheduler 'cosine'
# Train CorrUnet
accelerate launch --num_processes 8 train_flow_prediction.py --stage 'autoflow' --train_batch_size 16 --image_size 320 448 --dataloader_num_workers 16 --num_steps 1000000 --save_images_steps 500 --gradient_accumulation_steps 1 --lr_warmup_steps 10000 --use_ema --mixed_precision 'bf16' --prediction_type 'sample' --ddpm_num_steps 64 --checkpointing_steps 10000 --checkpoints_total_limit 5 --output_dir "check_points/autoflow-CorrUnet" --max_flow 400 --learning_rate 1e-4 --adam_weight_decay 0.0001 --it_aug --add_gaussian_noise --normalize_range --lr_scheduler 'cosine' --Unet_type 'RAFT_Unet'

Evaluation

python evaluate_diffusers_warprefine.py --pipeline_path check_points/xxx/pipeline-xxx --normalize_range --validation kitti sintel

License

This repo is released under the Apache License

Citation

@article{saxena2023surprising,
  title={The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation},
  author={Saxena, Saurabh and Herrmann, Charles and Hur, Junhwa and Kar, Abhishek and Norouzi, Mohammad and Sun, Deqing and Fleet, David J},
  journal={arXiv preprint arXiv:2306.01923},
  year={2023}
}

@misc{dong2023openddvm,
  title = {Open-DDVM: A Reproduction and Extension of Diffusion Model for Optical Flow Estimation},
  author = {Dong, Qiaole and Zhao, Bo and Fu, Yanwei},
  journal = {arXiv preprint arXiv:2312.01746},
  year = {2023}}
}

Acknowledgements

Thanks to previous open-sourced repo: