En el momento de hacer hallacas se reúnen varias personas para trabajar de forma síncrona y garantiza el mayor número de hallacas en el menor tiempo posible:
Preparación de las hojas de cambur: el encargado de preparar las hojas de cambur, debe lavar, asar y cortar las hojas. El tiempo para hacer esta tarea se modela por medio de una distribución normal con media M1
y desviación estándar D1
. El proceso se detiene cuando al encargado de poner el guiso dá la orden de detener el proceso. Cada hoja lista se colocará en la mesa de subproductos.
Colocación de la masa en la hoja: si hay hojas disponible, el encargado de poner la masa en la hoja procede a engrasar la hoja y colocar la masa. El tiempo requerido para ponerla masa en la hoja se puede modelar por medio de una distribución normal con media M2
y desviación estándar D2
. Una vez colocada la masa en la hoja se coloca en la mesa de subproductos.
Colocar el guiso: el encargado de colocar el guiso recibe X
Kg de guiso para hallacas, y debe estar pendiente que cuando queden Y
grs o menos ordenar al encargado de preparar las hojas que se detenga. A cada hallaca se le colocaran al menos 80grs de guiso. El tiempo requerido para colocar el guiso se puede modelar por medio de una distribución normal con media M3
y desviación estándar D3
. Una vez colocado el guiso y cerrada la hoja de la hallaca se coloca en la mesa de subproductos.
Amarre de hallacas: El encargado de amarrar las hallacas debe contabilizar las hallacas amarradas y ser capaz de responder consultas sobre hallacas amarradas y hallacas listas por amarrar, así como sacar las estadísticas de cuanto fue el tiempo para hacer las hallacas. El tiempo requerido para amarrar cada hallaca se puede modelar por medio de una distribución normal con media M4
y desviación estándar D4
.
Se pide:
- Modelar cada una de las 4 tareas como un procesos independientes, cada proceso debe escribir por consola lo que está haciendo.
- Además de los 4 procesos debe existir un proceso que obtenga y muestre los estados (libre/ocupado) de cada una de las personas.
Observación: en este problema hay una única área común para compartir los subproductos, por lo que se debe garantizar que se eviten los problemas de Race Condition
Each person working on making hallacas is named a worker, and all the workers inherit from the HallacaWorker
class, which has some common functionalities for them.
The problem of sharing memory is solved by using a server process that hosts and serves the memory to the processes that require sharing data.
Aside from the 4 workers, and the server there are other 2 processes:
- [query_client.py] A process with a console interface that allows the user to make queries to the HallacaTier.
- [run.py] The main process which runs the server, the 4 hallaca workers, and the query client, and also shows what every hallaca worker is doing and kills all the remaining processes when the simulation has finished and the user wants to close the program.
The HallacaTier worker has 2 threads, the main thread keeps listening for queries, so it can execute the requests, while the second thread does the main job of the HallacaTier which is to simulate the process of tying up hallacas to make hallacas with their co-workers.
When run.py is executed, it runs the server process.
The server process prepares to serve, the OS gives it an available port, and the process sends the network address of the server to the main process (run.py) by using a pipe and starts serving in a secondary thread (this is necessary for allowing easy communication between the main process and the server).
The main process then runs the 4 workers, and the query client with the network address as two arguments and then waits for all the workers to be ready to start the simulation.
Every worker also waits for the other workers to start the simulation.
When every worker is ready, the simulation starts, and the main process shows the state (free/busy) of the workers until the simulation finishes.
While the simulation is started and even after that, the user can use the query client to request data at any moment (some messages will be shown in the HallacaTier console and could be opened new windows that show the statistics).
When the simulation ends, the user can press Enter in the main process's console to kill the remaining processes.
I used 2 different objects to save the shared data:
- The
Var
object is a wrapper for any object withget
andset
methods. - The
Stack
object canput
andpop
any object type, and you can uselen
on it.
There are several shared objects, but the most important ones are the stacks: after each step of any hallaca's creation, the hallaca is put into the correspondent stack.
Note: every process is protected against race conditions.
When the query client asks the HallacaTier for showing statistics, it will show 2:
- A graph with hallaca's starting time and finishing time represented with blue, and red dots. The x-axis represents the id of each hallaca, and the y-axis represents time.
- A histogram of the time it takes to create each hallaca
The problem statement demands some constant variables which are in the settings.py
file.
Whenever you want to use distinct variables, you must change them on that file.
(I think this is the more comfortable way for the user of setting those variables since there are many, and that's why I chose this approach).
There is also a speed
variable which is used to increase the speed of the simulation since a realistic simulation takes too much time.
By default it's set to 10
which means a speed of 10x, 1
for example means no change, 2
means double the fast as in real-time, and so on.
The workers need authentication to access the data on the server, and they use a key to do so, and you have to set it up.
To do this, create a new file named local_settings.py
with a variable named AUTH_KEY
on it and a string as a value.
The file local_settings.py.example
is an example of what the local_settings.py
file should contain.
- Python 3
- Windows, macOS, or a Linux distribution (with a desktop environment able to open windows)
- Create a python virtual environment:
python -m venv venv
(your python command could be python3
instead of python
)
- Activate the virtual environment: macOS and Linux:
. venv/bin/activate
Windows:
.\venv\Scripts\activate
- With the
requirements.txt
file of this repo, execute:
pip install -r requirements.txt
-
In the root folder of the project, create a
local_settings.py
file with theAUTH_KEY
variable as inlocal_settings.py.example
-
Then run the simulation
python run.py
I took some screenshots to give you an idea of how it looks like when you run it.