Skip to content

Integrating LASSO and bootstrapping algorithm to find best prognostic or predictive biomarkers

License

Notifications You must be signed in to change notification settings

DongqiangZeng0808/Blasso

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Blasso: Integrating LASSO regression and bootstrapping algorithm to find best prognostic or predictive feature

Blasso logo

The package is not yet on CRAN. You can install from Github:

if (!requireNamespace("devtools", quietly = TRUE)) 
  install.packages("devtools")
if (!requireNamespace("Blasso", quietly = TRUE)) 
  devtools::install_github("DongqiangZeng0808/Blasso")

Loading packages and main function in the package:

library(Blasso) 
#> 载入需要的程辑包:glmnet
#> 载入需要的程辑包:Matrix
#> Loaded glmnet 4.1-2
#> 载入需要的程辑包:ggplot2
#> 载入需要的程辑包:tibble
#> 载入需要的程辑包:survival
#> 载入需要的程辑包:RColorBrewer
#> 载入需要的程辑包:progress
#> 载入需要的程辑包:stringr
#> ==========================================================================
#> Blasso v0.1.0  For help: https://github.com/DongqiangZeng0808/Blasso
#> 
#>  If you use Blasso in published research, please cite:
#>  Macrophage correlates with immunophenotype and predicts anti-PD-L1
#>  response of urothelial cancer. Theranostics 2020; 10(15):7002-7014.
#> ==========================================================================
help("best_predictor_cox")
#> starting httpd help server ...
#>  done
help("best_predictor_binomial")

Supplementary data

data("target")
head(target)
#>                ID status       time
#> 1 SAM00b9e5c52da9      1  1.9055441
#> 2 SAM0257bbbbd388      1 15.6386037
#> 3 SAM025b45c27e05      1  8.7720739
#> 4 SAM032c642382a7      1  2.4969199
#> 5 SAM04c589eb3fb3      0  0.6899384
#> 6 SAM0571f17f4045      1  4.5338809
data("features")
features[1:5,1:5]
#>                ID Glycosphosphatidylinositol_PCA Macrophage_M1_cibersort
#> 1 SAM00b9e5c52da9                     -0.3791156              -0.9651426
#> 2 SAM0257bbbbd388                      1.3471887              -0.8690076
#> 3 SAM025b45c27e05                     -0.1356366              -0.9915367
#> 4 SAM032c642382a7                     -1.5168052               0.8050212
#> 5 SAM04c589eb3fb3                     -3.0750685               0.6753930
#>   GO_CATECHOLAMINE_TRANSPORT GO_DOPAMINE_TRANSPORT
#> 1                -0.05571328            -0.2575771
#> 2                -0.27535773            -0.3974832
#> 3                 0.74345430             0.5631046
#> 4                -1.69420060            -1.4923073
#> 5                -1.58320438            -1.3433413

Usage-1: Cox-regression model

res<-best_predictor_cox(target_data   = target, 
                        features      = features, 
                        status        = "status",
                        time          = "time",
                        nfolds        = 10,
                        permutation   = 300,
                        show_progress = FALSE)

head(res$res, n = 10)
#>                                                            res1 Freq
#> 1                                       Macrophage M1 cibersort  270
#> 2                                     GO RESPONSE TO COBALT ION  239
#> 3                      GO REGULATION OF CHOLESTEROL HOMEOSTASIS  217
#> 4                         GO NEUROTRANSMITTER RECEPTOR ACTIVITY  211
#> 5                                Glycosphosphatidylinositol PCA  194
#> 6            GO IMIDAZOLE CONTAINING COMPOUND METABOLIC PROCESS  187
#> 7                            Dendritic cell activated cibersort  185
#> 8  GO CELL CELL ADHESION VIA PLASMA MEMBRANE ADHESION MOLECULES  178
#> 9                GO REGULATION OF DEFENSE RESPONSE TO BACTERIUM  153
#> 10                   T cell CD4 posi memory activated cibersort  144

Usage-2: Binomial model

res<-best_predictor_binomial(target_data   = target, 
                             features      = features,
                             response      = "status",
                             nfolds        = 10,
                             permutation   = 300,
                             show_progress = FALSE)

head(res$res, n = 10)
#>                                                              res1 Freq
#> 1                                         Macrophage M1 cibersort  285
#> 2                                       GO RESPONSE TO COBALT ION  273
#> 3                        GO REGULATION OF CHOLESTEROL HOMEOSTASIS  245
#> 4                     GO SOMATIC STEM CELL POPULATION MAINTENANCE  240
#> 5                           GO NEUROTRANSMITTER RECEPTOR ACTIVITY  231
#> 6                                                       GO M BAND  225
#> 7                              Dendritic cell activated cibersort  215
#> 8  GO RECEPTOR SIGNALING PROTEIN SERINE THREONINE KINASE ACTIVITY  212
#> 9                                      GO CENTROSOME LOCALIZATION  211
#> 10                                 Glycosphosphatidylinositol PCA  200

Session Info

sessionInfo()
#> R version 4.1.1 (2021-08-10)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19041)
#> 
#> Matrix products: default
#> 
#> locale:
#> [1] LC_COLLATE=Chinese (Simplified)_China.936 
#> [2] LC_CTYPE=Chinese (Simplified)_China.936   
#> [3] LC_MONETARY=Chinese (Simplified)_China.936
#> [4] LC_NUMERIC=C                              
#> [5] LC_TIME=Chinese (Simplified)_China.936    
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] Blasso_0.1.0       stringr_1.4.0      progress_1.2.2     RColorBrewer_1.1-2
#> [5] survival_3.2-11    tibble_3.1.4       ggplot2_3.3.5      glmnet_4.1-2      
#> [9] Matrix_1.3-4      
#> 
#> loaded via a namespace (and not attached):
#>  [1] lattice_0.20-44   prettyunits_1.1.1 ps_1.6.0          assertthat_0.2.1 
#>  [5] rprojroot_2.0.2   digest_0.6.27     foreach_1.5.1     utf8_1.2.2       
#>  [9] R6_2.5.1          evaluate_0.14     highr_0.9         pillar_1.6.2     
#> [13] rlang_0.4.11      rstudioapi_0.13   callr_3.7.0       rmarkdown_2.11   
#> [17] labeling_0.4.2    desc_1.3.0        devtools_2.4.2    splines_4.1.1    
#> [21] munsell_0.5.0     compiler_4.1.1    xfun_0.25         pkgconfig_2.0.3  
#> [25] pkgbuild_1.2.0    shape_1.4.6       htmltools_0.5.2   tidyselect_1.1.1 
#> [29] codetools_0.2-18  fansi_0.5.0       crayon_1.4.1      dplyr_1.0.7      
#> [33] withr_2.4.2       grid_4.1.1        gtable_0.3.0      lifecycle_1.0.0  
#> [37] DBI_1.1.1         magrittr_2.0.1    scales_1.1.1      cli_3.0.1        
#> [41] stringi_1.7.4     cachem_1.0.6      farver_2.1.0      fs_1.5.0         
#> [45] remotes_2.4.0     testthat_3.0.4    ellipsis_0.3.2    vctrs_0.3.8      
#> [49] generics_0.1.0    iterators_1.0.13  tools_4.1.1       glue_1.4.2       
#> [53] purrr_0.3.4       hms_1.1.0         processx_3.5.2    pkgload_1.2.2    
#> [57] fastmap_1.1.0     yaml_2.2.1        colorspace_2.0-2  sessioninfo_1.1.1
#> [61] memoise_2.0.0     knitr_1.34        usethis_2.0.1

References

Zeng D, Ye Z, Wu J, Zhou R, Fan X, Wang G, Huang Y, Wu J, Sun H, Wang M, Bin J, Liao Y, Li N, Shi M, Liao W. Macrophage correlates with immunophenotype and predicts anti-PD-L1 response of urothelial cancer. Theranostics 2020; 10(15):7002-7014. doi:10.7150/thno.46176


Contact: E-mail any questions to [email protected]

About

Integrating LASSO and bootstrapping algorithm to find best prognostic or predictive biomarkers

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages