A starter solution code(including the best final solution iteration) to a machine learning problem from Zindi.Africa.
Find link to final notebook here
Starter iteration utilized FFT(fast fourier transform) features to train a neural network architecture in a single/multi-input fashion.
The ultimate goal of this project was to accurately identify the levels of different blood-based substrates from Near-Infrared Reflectance(NIR) spectral data.
Full description of challenge and datasets acquisition can be accessed here
python train.py --train_csv Train.csv --test_csv Test.csv --use_threshold --use_smoothing --BATCH_SIZE 32
--EARLY_STOP --EPOCHS 100 --WEIGHT_DECAY 1e-6 --model_type single --model_name NN
python train.py --train_csv Train.csv --test_csv Test.csv --use_threshold --use_smoothing --BATCH_SIZE 32
--EARLY_STOP --EPOCHS 100 --WEIGHT_DECAY 1e-6 --model_type double --model_name NN
python make_submission.py --model_name NN --submission_dir path/to/submissions
Rank : 14/265
Name | Zindi ID | Github ID |
---|---|---|
Ronny Polle | @100i | @DrCod |