Skip to content
forked from ppgaluzio/MOBOpt

Multi-objective Bayesian optimization

License

Notifications You must be signed in to change notification settings

Dwood0403/MOBOpt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOBOpt

Multi-Objective Bayesian Optimization

Prerequisites

  • Python 3.7
  • numpy 1.16
  • matplotlib 3.0
  • scikit-learn 0.22
  • deap 1.3
  • scipy 1.1

Instalation

  • Clone this repo to your local machine using https://github.com/ppgaluzio/MOBOpt.git
  • Run python3 setup.py install
  • Using pip pip3 install https://github.com/ppgaluzio/MOBOpt/archive/master.zip

Usage

Check wiki for basic usage and documentation

Analysis

Files PrintFront.py and Analisa.py, in the scripts folder, are examples of how to analyze the output of the method

Cite

To cite MOBOpt, please refer to our paper

@article{GALUZIO2020100520,
title = "MOBOpt — multi-objective Bayesian optimization",
journal = "SoftwareX",
volume = "12",
pages = "100520",
year = "2020",
issn = "2352-7110",
doi = "https://doi.org/10.1016/j.softx.2020.100520",
url = "http://www.sciencedirect.com/science/article/pii/S2352711020300911",
author = "Paulo Paneque Galuzio and Emerson Hochsteiner [de Vasconcelos Segundo] and Leandro dos Santos Coelho and Viviana Cocco Mariani"
}

For the actual version described in the publication, refer to release v1.0

About

Multi-objective Bayesian optimization

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%