Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Dyakonov authored Nov 17, 2021
1 parent d0c5835 commit 693f6ef
Showing 1 changed file with 4 additions and 1 deletion.
5 changes: 4 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,12 +88,15 @@
| [**Выделение сообществ (Community Detection)**](./2020/PZAD2020_063community_10old.pdf) 11.12.2020 | Сообщество в графе. Примеры сообществ. Датасет Карате-клуб. Разбиение графа: Kerninghan-Lin Algorithm. Обычная кластеризация с мерой схожести вершин. Edge betweenness (Girvan-Newmann’s method). модулярность. Fast community unfolding: Louvain method / Multilevel. Walktrap. Infomap. спектральная теория графов использование. Spectral modularity maximization. Тестирование разных методов. Задача: выделение кругов пользователей в эго-подграфах графов социальной сети.|
| [**Случайный лес**](./2020/PZAD2020_052rf_10n.pdf) 18.12.2020 | Универсальные методы. Случайный лес. Бэггинг. OOB (out of bag). Настройка параметров методов. Области устойчивости. Близости, вычисленные по RF. Extreme Random Trees. Приложения RF: Biological Response. Приложения RF: Реальная задача (Photo). Приложения RF: Калибровка RF. Приложения RF: Задача Search Results Relevance.|
| [**Важность признаков в ансамблях деревьев**](./2020/PZAD2020_044featureimportance_04.pdf) 18.12.2020 | Проблема формализации важности признаков. Примеры использования важности признаков. Важность по неоднородности (impurity-based importance). Перестановочная важность PFI (Permutation Feature Importance). Эксперименты по оцениванию важности. Boruta (идея). ACE (Artificial Contrasts with Ensembles).|
| **Градиентный бустинг**](./2020/PZAD053_gradboosting_202106n.pdf) 17.11.2021 | Градиентный бустинг над деревьями. Итерация градиентного бустинга. Наискорейший спуск. Эвристика сокращения – Shrinkage. Стохастический градиентный бустинг. TreeBoost – градиентный бустинг над деревьями. Продвинутые методы оптимизации. Современные реализации градиентного бустинга: XGBoost, LightGBM, CatBoost. Встроенные способы контроля. Параметры градиентного бустинга. Case: Задача скоринга (TKS). Калибровка. Case: предсказание ответов на вопросы.|




### дополнительные темы

| тема | программа |
| :-- | :-- |
| **Градиентный бустинг** ??.??.???? | Градиентный бустинг над деревьями. Итерация градиентного бустинга. Наискорейший спуск. Эвристика сокращения – Shrinkage. Стохастический градиентный бустинг. TreeBoost – градиентный бустинг над деревьями. Продвинутые методы оптимизации. Современные реализации градиентного бустинга: XGBoost, LightGBM, CatBoost. Встроенные способы контроля. Параметры градиентного бустинга. Case: Задача скоринга (TKS). Калибровка. Case: предсказание ответов на вопросы.|
| **Рекомендательные системы (Recommender Systems): классические методы** ??.??.???? | Описание и назначение. Цели рекомендательных систем. Виды рекомендаций. Данные для рекомендаций, сбор данных. Объекты рекомендаций. цели бизнеса. Новизна товаров. Разные каналы рекомендаций. Мифы о рекомендательных системах. История исследований в рекомендательных системах. Рекомендации по контенту (content based methods). Коллаборативная фильтрация. GroupLens-алгоритм. Похожесть пользователей и товаров. Алгоритм «YouTube». Рекомендация на основе матричных разложений (SVD, SVD++, timeSVD++). Учёт времени при рекомендациях. Адаптация SVD под социальные связи. One-class recommendation. Факторизационные машины. Факторизационная машина с полями (FFM). Простые методы рекомендаций. Случайные блуждания в RecSys. Функционалы качества. Желаемые свойства рекомендаций. Контекст. Реакция пользователей. Knowledge-based Recommendations. Важность объяснений (explanations). A/B-тесты.|
| **Глубокое обучение в рекомендательных системах** ??.??.???? | Глубокое обучение в рекомендательных системах. Первые опыты – RBM. использование «простых» нейросетей. Deep CF. Deep Semantic Similarity Model (DSSM). Collaborative Metric Learning (CML). DL: пример рекомендаций в YouTube. DL: Автокодировщики. DL: использование CNN. CONTENT2VEC. Анализ сессий. Использование RNN. Иерархические RNN. Вложения (представления). Использование дополнительной информации. Тренды. Тестирование алгоритмов. Разбор кейса: технология LenKor для рекомендации видео. История одного тестирования.|
| **Интерпретация данных и модели** ??.??.???? | *была в 2019 году* |
Expand Down

0 comments on commit 693f6ef

Please sign in to comment.