forked from StefanoDelloca/tirocinio
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9a438d5
commit dcdb2f5
Showing
1 changed file
with
195 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"from sklearn import datasets\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"from sklearn.svm import SVR\n", | ||
"from sklearn.preprocessing import normalize\n", | ||
"from sklearn.metrics import accuracy_score\n", | ||
"from sklearn.model_selection import StratifiedKFold\n", | ||
"from sklearn.feature_selection import RFE\n", | ||
" " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"40001\n", | ||
"100001\n", | ||
"1\n", | ||
"40002\n", | ||
"100002\n", | ||
"2\n", | ||
"40003\n", | ||
"100003\n", | ||
"3\n", | ||
"40004\n", | ||
"100004\n", | ||
"4\n", | ||
"40005\n", | ||
"100005\n", | ||
"5\n", | ||
"40006\n", | ||
"100006\n", | ||
"6\n", | ||
"40007\n", | ||
"100007\n", | ||
"7\n", | ||
"40008\n", | ||
"100008\n", | ||
"8\n", | ||
"40009\n", | ||
"100009\n", | ||
"9\n", | ||
"40010\n", | ||
"100010\n", | ||
"10\n", | ||
"\n", | ||
"CAT.Fever 10\n", | ||
"CAT.Cough 10\n", | ||
"CAT.Dyspnea 0\n", | ||
"CAT.IR 0\n", | ||
"CAT.Myalgias 0\n", | ||
"CAT.Other 10\n", | ||
"CAT.Syncope 10\n", | ||
"CAT.Asthenia 10\n", | ||
"CAT.Vomiting.Nausea 0\n", | ||
"CAT.Diarrhea 10\n", | ||
"CAT.Headache 0\n", | ||
"CAT.Pharingeal.pain 10\n", | ||
"INT.No.Symptoms 10\n", | ||
"CAT.Pneumo.asthma 10\n", | ||
"CAT.Pneumo.BPCO 0\n", | ||
"CAT.Neoplasia.last.5.years 10\n", | ||
"CAT.Smoke 0\n", | ||
"CAT.Arterial.hypertension 0\n", | ||
"CAT.Cardiovascular.pathologies 10\n", | ||
"CAT.Diabetes 10\n", | ||
"CAT.Obesity 10\n", | ||
"CAT.Celebral.stroke 10\n", | ||
"INT.No.Comorbidities 10\n", | ||
"CAT.Sex 0\n", | ||
"INT.Age 0\n", | ||
"INT.Symptoms.No.days 0\n", | ||
"INT.usa.radio.score.MAX 10\n", | ||
"INT.radio.SCORE 0\n", | ||
"NUM.GEO.extent.score 0\n", | ||
"NUM.OPC.extent.score 10\n", | ||
"INT.PaO2.PF 0\n", | ||
"INT.SpO2.in.FA 10\n", | ||
"INT.ALT 0\n", | ||
"INT.Platelets 0\n", | ||
"NUM.White.blood.cells 0\n", | ||
"NUM.Red.blood.cells 10\n", | ||
"NUM.Lymphocyte 0\n", | ||
"NUM.perc.Lymphocyte 0\n", | ||
"NUM.CRP 0\n", | ||
"NUM.Haemoglobin 10\n", | ||
"NUM.Haematocrit 0\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"#carico il dataset\n", | ||
"data = pd.read_csv(r'C:\\Users\\Utente\\anaconda3\\Lib\\site-packages\\pandas\\io\\data_covnet_score-imputed_missRF_increasing_1.txt')\n", | ||
"\n", | ||
"#creo un array che mi serve per salvare le informazioni delle features di volta in volta.\n", | ||
"parzial_features=list()\n", | ||
"\n", | ||
"#Seleziono tutte le colonne tranne la prima.\n", | ||
"features = [f for f in data.columns if f not in ['LABEL']]\n", | ||
"X = data[features].values\n", | ||
"y = data['LABEL'].values.ravel()\n", | ||
"\n", | ||
"#creo un array monodimensionale lungo quanto \"altri\" ma solo di 0. \n", | ||
"y_pred=y-y\n", | ||
"\n", | ||
"#classificatore\n", | ||
"estimator = SVR(kernel=\"linear\")\n", | ||
"selector = RFE(estimator, n_features_to_select=20, step=1)\n", | ||
"#le tre variabili sotto sono create per capire a che punto è l'esecuzione del programma, in quanto molto lento.\n", | ||
"a=0\n", | ||
"b=100000\n", | ||
"c=40000\n", | ||
"#crea un oggetto pronto ad operare: quando gli arriva in input qualcosa lo divide in 10 pezzettini con la stessa proporzione\n", | ||
"skf = StratifiedKFold(n_splits=10)\n", | ||
"\n", | ||
"for train_index, test_index in skf.split(X, y):\n", | ||
" c=c+1\n", | ||
" print(c)\n", | ||
"\n", | ||
" X_train, X_test = X[train_index,:], X[test_index,:]\n", | ||
" y_train, y_test = y[train_index], y[test_index]\n", | ||
" \n", | ||
" selector=selector.fit(X, y)\n", | ||
" \n", | ||
" b=b+1\n", | ||
" print(b)\n", | ||
" \n", | ||
" #salvo tutte le volte i risultati ottenuti in un array.\n", | ||
" indexes = np.where(selector.support_ == True)\n", | ||
" for x in np.nditer(indexes):\n", | ||
" parzial_features.append(features[x])\n", | ||
" \n", | ||
" a=a+1\n", | ||
" print(a)\n", | ||
"\n", | ||
"\n", | ||
" \n", | ||
" #clf = rbf_svm.fit(X_train, y_train)\n", | ||
" #y_pred[test_index] = clf.predict(X_test)\n", | ||
" \n", | ||
" \n", | ||
" #fine ciclo for\n", | ||
"#selector.support_\n", | ||
"\n", | ||
"print()\n", | ||
"for i in features:\n", | ||
" c=parzial_features.count(i)\n", | ||
" print(i,' ', c)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |