- 1. 《深度学习》 Yoshua Bengio.Ian GoodFellow
- 2. 《机器学习》 周志华
- 3. 《神经网络与深度学习》 Michael Nielsen
- 4. 《斯坦福大学深度学习基础教程》 Andrew Ng(吴恩达)
- 5. 《模式识别与机器学习》 Christopher Bishop
- 6. 《Tensorflow实战Google深度学习框架》 郑泽宇 顾思宇
- 7. 《机器学习实战》 PelerHarrington
- 8. 机器学习 吴恩达 cs229个人笔记
- 9. 机器学习 吴恩达 Coursera个人笔记
- 10. 深度学习 吴恩达 个人笔记
- 11. 深度学习 李飞飞 已授权个人翻译笔记
- 12. 台湾大学(NTU)李宏毅教授课程
- 13. 《自然语言处理》Jacob Eisenstein
- 14. 《强化学习》
- 15. hangdong的深度学习博客,论文推荐
- 1. 94页论文综述卷积神经网络:从基础技术到研究前景
- 2. 从LeNet-5到DenseNet
- 3. CNN图像分割简史:从R-CNN到Mask R-CNN(译)
- 4. 深度学习之目标检测的前世今生(Mask R-CNN)
- 5. 纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception
- 6. 深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD
- 7. 图像语义分割(Semantic segmentation) Survey
- 7. 从RCNN到SSD,这应该是最全的一份目标检测算法盘点
- 8. 图像语义分割(Semantic segmentation) Survey
- 9. 语义分割 发展综述
- 深度学习分类网络
- 从VGG到NASNet,一文概览图像分类网络
- From RCNN to YOLO:上,下
- 后 R-CNN时代, Faster R-CNN、SSD、YOLO 各类变体统治下的目标检测综述:Faster R-CNN系列胜了吗?
- 卷积神经网络工作原理
- 变形卷积核、可分离卷积
- 各种卷积
- 反卷积
- CNN模型之ShuffleNet
- 一文简述ResNet及其多种变体
- ResNet解析
- 将CNN引入目标检测的开山之作:R-CNN
- 深度学习(十八)基于R-CNN的物体检测
- R-CNN论文详解
- 深度学习(六十四)Faster R-CNN物体检测
- 先理解Mask R-CNN的工作原理,然后构建颜色填充器应用
- 人脸检测和识别算法综述
- 语义分割卷积神经网络快速入门
- 图像语义分割的工作原理和CNN架构变迁
- CapsNet入门系列
- YOLO
- 目标检测|YOLOv2原理与实现(附YOLOv3)
- 目标检测模型YOLO v3问世
- Attention, 1,2,3,4
- 读取器读取原始数据(例如源语句中的源词)并将其转换为分布式表示,其中 一个特征向量与每个词的位置相关联。
- 存储器存储读取器输出的特征向量列表。这可以被理解为包含事实序列的存储 器,而之后不必以相同的顺序从中检索,也不必访问全部。
- 最后一个程序利用存储器的内容顺序地执行任务,每个时间步聚焦于某个存储 器元素的内容(或几个,具有不同权重)。
- 一文读懂卷积神经网络中的1x1卷积核
- 1. GAN原理学习笔记
- 2. 极端图像压缩的对抗生成网络
- 3. 台湾大学李宏毅GAN教程
- 4. 2017年GAN 计算机视觉相关paper汇总
- 5. 在Keras上实现GAN:构建消除图片模糊的应用
- 6. CycleGAN:图片风格,想换就换 | ICCV 2017论文解读
- 7. Wasserstein GAN
- 用变分推断统一理解生成模型(VAE、GAN、AAE、ALI)
- 完全图解RNN、RNN变体、Seq2Seq、Attention机制
- 循环神经网络(RNN, Recurrent Neural Networks)介绍
- RNN以及LSTM的介绍和公式梳理
- 深度学习其五 循环神经网络
- 用循环神经网络进行文件无损压缩:斯坦福大学提出DeepZip
- 吴恩达序列建模课程
- Word2Vec
- 1. 优化算法纵览
- 2. 从梯度下降到Adam
- 3. 从梯度下降到拟牛顿法:盘点训练神经网络的五大学习算法
- 4. 正则化技术总结
- 5. 最优化算法系列(math)
- 6. 神经网络训练中的梯度消失与梯度爆炸
- 7. 神经网络的优化及训练
- 8. 通俗讲解查全率和查准率
- 9. 激活函数一览
- 10. Coursera吴恩达《优化深度神经网络》课程笔记(3)-- 超参数调试、Batch正则化和编程框架
- 11. 机器学习各种熵
- 12. 距离和相似性度量
- 13. 机器学习里的黑色艺术:normalization, standardization, regularization
- 14. LSTM系列的梯度问题
- 15. 损失函数整理
- 16. 详解残差块为何有助于解决梯度弥散问题
- 17. FAIR何恺明等人提出组归一化:替代批归一化,不受批量大小限制
- 18. Batch Normalization(BN):1 ,2 ,3 ,4 , 5
- 19. 详解深度学习中的Normalization,不只是BN
- 20. BFGS
- 21. 详解深度学习中的梯度消失、爆炸原因及其解决方法
- 强化学习(Reinforcement Learning)知识整理
- 强化学习从入门到放弃的资料
- 强化学习入门
- 强化学习——从Q-Learning到DQN到底发生了什么?
- 从强化学习到深度强化学习(上)
- 从强化学习到深度强化学习(下)
- 一文带你理解Q-Learning的搜索策略
- 马尔科夫决策过程之Markov Processes(马尔科夫过程)
- 马尔科夫决策过程之Markov Reward Process(马尔科夫奖励过程)
- 马尔科夫决策过程之Bellman Equation(贝尔曼方程)
- 马尔科夫决策过程之Markov Decision Process(马尔科夫决策过程)
- 马尔科夫决策过程之最优价值函数与最优策略
- 基于word2vec训练词向量(一)
- 基于word2vec训练词向量(二)
- 自然语言处理中的自注意力机制(Self-Attention Mechanism)
- YJango的Word Embedding--介绍
- CMU&谷歌大脑提出新型问答模型QANet
- 干货 | 一文概览主要语义分割网络
- 深度学习中IU、IoU(Intersection over Union)
- Selective Search for Object Detection (译文)
- NMS——非极大值抑制
- 边框回归(Bounding Box Regression)详解
- Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起
- Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜
- 机器学习实战教程(十三):树回归基础篇之CART算法与树剪枝
- 《机器学习实战》基于信息论的三种决策树算法(ID3,C4.5,CART)
- 说说决策树剪枝算法
- 机器学习实战 第九章 树回归
- 决策树值ID3、C4.5实现
- 决策树值CART实现
- SVM通俗导论 July(本文章是我看过最好的SVM导论)
- Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM (SMO训练过程总结得清晰易懂)
- svm核函数的理解和选择
- 核函数和径向基核函数 (Radial Basis Function)--RBF
- SVM核函数
- 1. 25个深度学习相关公开数据集
- 2. 自然语言处理(NLP)数据集
- 3.全唐诗(43030首)
- 4. 伯克利大学公开数据集
- 5. ACL 2018资源:100+ 预训练的中文词向量
- 6. 预训练中文词向量
- Inter Covariate shift
-
- 2014机器学习个人笔记、cs231、2011机器学习个人笔记、深度学习
- 将收藏过的文章转移到此项目(一直持续)
- 准备新建个论文索引项目,将看过的论文保存(按照方向、年份、名称排序)
- 重新调整本项目的结构(该方向的综述或者迅速纵览,详细解释文章,实战(包括测试和训练))
- 将看过的论文的模型的test代码和train代码跑通
- 准备跑通YOLO系列模型
-
- YOLOv1 tensorflow版本test代码跑通
-
- YOLOv1 tensorlfow版本train代码跑通
-
- YOLOv3 darknet版本test跑通
-
- YOLOv3 darknet版本train跑通
-
- 准备跑通YOLO系列模型