Skip to content

Commit

Permalink
add adaptive token sampling paper
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Dec 4, 2021
1 parent 79c864d commit 365b4d9
Show file tree
Hide file tree
Showing 4 changed files with 307 additions and 1 deletion.
44 changes: 44 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -679,6 +679,39 @@ for _ in range(100):
torch.save(model.state_dict(), './pretrained-net.pt')
```

## Adaptive Token Sampling

<img src="./images/ats.png" width="400px"></img>

This <a href="https://arxiv.org/abs/2111.15667">paper</a> proposes to use the CLS attention scores, re-weighed by the norms of the value heads, as means to discard unimportant tokens at different layers.

```python
import torch
from vit_pytorch.ats_vit import ViT

v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
max_tokens_per_depth = (256, 128, 64, 32, 16, 8), # a tuple that denotes the maximum number of tokens that any given layer should have. if the layer has greater than this amount, it will undergo adaptive token sampling
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)

img = torch.randn(4, 3, 256, 256)

preds = v(img) # (1, 1000)

# you can also get a list of the final sampled patch ids
# a value of -1 denotes padding

preds, token_ids = v(img, return_sampled_token_ids = True) # (1, 1000), (1, <=8)
```

## Dino

<img src="./images/dino.png" width="350px"></img>
Expand Down Expand Up @@ -1119,6 +1152,17 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```

```bibtex
@misc{fayyaz2021ats,
title = {ATS: Adaptive Token Sampling For Efficient Vision Transformers},
author = {Mohsen Fayyaz and Soroush Abbasi Kouhpayegani and Farnoush Rezaei Jafari and Eric Sommerlade and Hamid Reza Vaezi Joze and Hamed Pirsiavash and Juergen Gall},
year = {2021},
eprint = {2111.15667},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```

```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},
Expand Down
Binary file added images/ats.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.24.2',
version = '0.24.3',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',
Expand Down
262 changes: 262 additions & 0 deletions vit_pytorch/ats_vit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from torch import nn, einsum

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helpers

def exists(val):
return val is not None

def pair(t):
return t if isinstance(t, tuple) else (t, t)

# adaptive token sampling functions and classes

def log(t, eps = 1e-6):
return torch.log(t + eps)

def sample_gumbel(shape, device, dtype, eps = 1e-6):
u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1)
return -log(-log(u, eps), eps)

def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]

value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)

dim += value_expand_len
return values.gather(dim, indices)

class AdaptiveTokenSampling(nn.Module):
def __init__(self, output_num_tokens, eps = 1e-6):
super().__init__()
self.eps = eps
self.output_num_tokens = output_num_tokens

def forward(self, attn, value, mask):
heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype

# first get the attention values for CLS token to all other tokens

cls_attn = attn[..., 0, 1:]

# calculate the norms of the values, for weighting the scores, as described in the paper

value_norms = value[..., 1:, :].norm(dim = -1)

# weigh the attention scores by the norm of the values, sum across all heads

cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms)

# normalize to 1

normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps)

# instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead

pseudo_logits = log(normed_cls_attn)

# mask out pseudo logits for gumbel-max sampling

mask_without_cls = mask[:, 1:]
mask_value = -torch.finfo(attn.dtype).max / 2
pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value)

# expand k times, k being the adaptive sampling number

pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens)
pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype)

# gumble-max and add one to reserve 0 for padding / mask

sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1

# calculate unique using torch.unique and then pad the sequence from the right

unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)]
unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True)

# calculate the new mask, based on the padding

new_mask = unique_sampled_token_ids != 0

# CLS token never gets masked out (gets a value of True)

new_mask = F.pad(new_mask, (1, 0), value = True)

# prepend a 0 token id to keep the CLS attention scores

unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0)
expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads)

# gather the new attention scores

new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2)

# return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual)
return new_attn, new_mask, unique_sampled_token_ids

# classes

class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5

self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

self.output_num_tokens = output_num_tokens
self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None

self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)

def forward(self, x, *, mask):
num_tokens = x.shape[1]

qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

if exists(mask):
dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j')
mask_value = -torch.finfo(dots.dtype).max
dots = dots.masked_fill(~dots_mask, mask_value)

attn = self.attend(dots)

sampled_token_ids = None

# if adaptive token sampling is enabled
# and number of tokens is greater than the number of output tokens
if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens:
attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask)

out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

return self.to_out(out), mask, sampled_token_ids

class Transformer(nn.Module):
def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer'
assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order'
assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer'

self.layers = nn.ModuleList([])
for _, output_num_tokens in zip(range(depth), max_tokens_per_depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))

def forward(self, x):
b, n, device = *x.shape[:2], x.device

# use mask to keep track of the paddings when sampling tokens
# as the duplicates (when sampling) are just removed, as mentioned in the paper
mask = torch.ones((b, n), device = device, dtype = torch.bool)

token_ids = torch.arange(n, device = device)
token_ids = repeat(token_ids, 'n -> b n', b = b)

for attn, ff in self.layers:
attn_out, mask, sampled_token_ids = attn(x, mask = mask)

# when token sampling, one needs to then gather the residual tokens with the sampled token ids
if exists(sampled_token_ids):
x = batched_index_select(x, sampled_token_ids, dim = 1)
token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1)

x = x + attn_out

x = ff(x) + x

return x, token_ids

class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width

self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)

self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)

self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout)

self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

def forward(self, img, return_sampled_token_ids = False):
x = self.to_patch_embedding(img)
b, n, _ = x.shape

cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)

x, token_ids = self.transformer(x)

logits = self.mlp_head(x[:, 0])

if return_sampled_token_ids:
# remove CLS token and decrement by 1 to make -1 the padding
token_ids = token_ids[:, 1:] - 1
return logits, token_ids

return logits

0 comments on commit 365b4d9

Please sign in to comment.