forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
79c864d
commit 365b4d9
Showing
4 changed files
with
307 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
import torch | ||
import torch.nn.functional as F | ||
from torch.nn.utils.rnn import pad_sequence | ||
from torch import nn, einsum | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def exists(val): | ||
return val is not None | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
# adaptive token sampling functions and classes | ||
|
||
def log(t, eps = 1e-6): | ||
return torch.log(t + eps) | ||
|
||
def sample_gumbel(shape, device, dtype, eps = 1e-6): | ||
u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1) | ||
return -log(-log(u, eps), eps) | ||
|
||
def batched_index_select(values, indices, dim = 1): | ||
value_dims = values.shape[(dim + 1):] | ||
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices)) | ||
indices = indices[(..., *((None,) * len(value_dims)))] | ||
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims) | ||
value_expand_len = len(indices_shape) - (dim + 1) | ||
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)] | ||
|
||
value_expand_shape = [-1] * len(values.shape) | ||
expand_slice = slice(dim, (dim + value_expand_len)) | ||
value_expand_shape[expand_slice] = indices.shape[expand_slice] | ||
values = values.expand(*value_expand_shape) | ||
|
||
dim += value_expand_len | ||
return values.gather(dim, indices) | ||
|
||
class AdaptiveTokenSampling(nn.Module): | ||
def __init__(self, output_num_tokens, eps = 1e-6): | ||
super().__init__() | ||
self.eps = eps | ||
self.output_num_tokens = output_num_tokens | ||
|
||
def forward(self, attn, value, mask): | ||
heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype | ||
|
||
# first get the attention values for CLS token to all other tokens | ||
|
||
cls_attn = attn[..., 0, 1:] | ||
|
||
# calculate the norms of the values, for weighting the scores, as described in the paper | ||
|
||
value_norms = value[..., 1:, :].norm(dim = -1) | ||
|
||
# weigh the attention scores by the norm of the values, sum across all heads | ||
|
||
cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms) | ||
|
||
# normalize to 1 | ||
|
||
normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps) | ||
|
||
# instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead | ||
|
||
pseudo_logits = log(normed_cls_attn) | ||
|
||
# mask out pseudo logits for gumbel-max sampling | ||
|
||
mask_without_cls = mask[:, 1:] | ||
mask_value = -torch.finfo(attn.dtype).max / 2 | ||
pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value) | ||
|
||
# expand k times, k being the adaptive sampling number | ||
|
||
pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens) | ||
pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype) | ||
|
||
# gumble-max and add one to reserve 0 for padding / mask | ||
|
||
sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1 | ||
|
||
# calculate unique using torch.unique and then pad the sequence from the right | ||
|
||
unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)] | ||
unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True) | ||
|
||
# calculate the new mask, based on the padding | ||
|
||
new_mask = unique_sampled_token_ids != 0 | ||
|
||
# CLS token never gets masked out (gets a value of True) | ||
|
||
new_mask = F.pad(new_mask, (1, 0), value = True) | ||
|
||
# prepend a 0 token id to keep the CLS attention scores | ||
|
||
unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0) | ||
expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads) | ||
|
||
# gather the new attention scores | ||
|
||
new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2) | ||
|
||
# return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual) | ||
return new_attn, new_mask, unique_sampled_token_ids | ||
|
||
# classes | ||
|
||
class PreNorm(nn.Module): | ||
def __init__(self, dim, fn): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(self.norm(x), **kwargs) | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | ||
|
||
self.output_num_tokens = output_num_tokens | ||
self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
|
||
def forward(self, x, *, mask): | ||
num_tokens = x.shape[1] | ||
|
||
qkv = self.to_qkv(x).chunk(3, dim = -1) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | ||
|
||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | ||
|
||
if exists(mask): | ||
dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j') | ||
mask_value = -torch.finfo(dots.dtype).max | ||
dots = dots.masked_fill(~dots_mask, mask_value) | ||
|
||
attn = self.attend(dots) | ||
|
||
sampled_token_ids = None | ||
|
||
# if adaptive token sampling is enabled | ||
# and number of tokens is greater than the number of output tokens | ||
if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens: | ||
attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask) | ||
|
||
out = torch.matmul(attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
|
||
return self.to_out(out), mask, sampled_token_ids | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer' | ||
assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order' | ||
assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer' | ||
|
||
self.layers = nn.ModuleList([]) | ||
for _, output_num_tokens in zip(range(depth), max_tokens_per_depth): | ||
self.layers.append(nn.ModuleList([ | ||
PreNorm(dim, Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout)), | ||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||
])) | ||
|
||
def forward(self, x): | ||
b, n, device = *x.shape[:2], x.device | ||
|
||
# use mask to keep track of the paddings when sampling tokens | ||
# as the duplicates (when sampling) are just removed, as mentioned in the paper | ||
mask = torch.ones((b, n), device = device, dtype = torch.bool) | ||
|
||
token_ids = torch.arange(n, device = device) | ||
token_ids = repeat(token_ids, 'n -> b n', b = b) | ||
|
||
for attn, ff in self.layers: | ||
attn_out, mask, sampled_token_ids = attn(x, mask = mask) | ||
|
||
# when token sampling, one needs to then gather the residual tokens with the sampled token ids | ||
if exists(sampled_token_ids): | ||
x = batched_index_select(x, sampled_token_ids, dim = 1) | ||
token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1) | ||
|
||
x = x + attn_out | ||
|
||
x = ff(x) + x | ||
|
||
return x, token_ids | ||
|
||
class ViT(nn.Module): | ||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
|
||
num_patches = (image_height // patch_height) * (image_width // patch_width) | ||
patch_dim = channels * patch_height * patch_width | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), | ||
nn.Linear(patch_dim, dim), | ||
) | ||
|
||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | ||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | ||
self.dropout = nn.Dropout(emb_dropout) | ||
|
||
self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout) | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
def forward(self, img, return_sampled_token_ids = False): | ||
x = self.to_patch_embedding(img) | ||
b, n, _ = x.shape | ||
|
||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) | ||
x = torch.cat((cls_tokens, x), dim=1) | ||
x += self.pos_embedding[:, :(n + 1)] | ||
x = self.dropout(x) | ||
|
||
x, token_ids = self.transformer(x) | ||
|
||
logits = self.mlp_head(x[:, 0]) | ||
|
||
if return_sampled_token_ids: | ||
# remove CLS token and decrement by 1 to make -1 the padding | ||
token_ids = token_ids[:, 1:] - 1 | ||
return logits, token_ids | ||
|
||
return logits |