Skip to content

Commit

Permalink
complete learnable memory ViT, for efficient fine-tuning and potentia…
Browse files Browse the repository at this point in the history
…lly plays into continual learning
  • Loading branch information
lucidrains committed Mar 31, 2022
1 parent 4e6a42a commit df656fe
Show file tree
Hide file tree
Showing 5 changed files with 282 additions and 2 deletions.
64 changes: 64 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [Parallel ViT](#parallel-vit)
- [Learnable Memory ViT](#learnable-memory-vit)
- [Dino](#dino)
- [Accessing Attention](#accessing-attention)
- [Research Ideas](#research-ideas)
Expand Down Expand Up @@ -903,6 +904,61 @@ img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000)
```

## Learnable Memory ViT

<img src="./images/learnable-memory-vit.png" width="350px"></img>

This <a href="https://arxiv.org/abs/2203.15243">paper</a> shows that adding learnable memory tokens at each layer of a vision transformer can greatly enhance fine-tuning results (in addition to learnable task specific CLS token and adapter head).

You can use this with a specially modified `ViT` as follows

```python
import torch
from vit_pytorch.learnable_memory_vit import ViT, Adapter

# normal base ViT

v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)

img = torch.randn(4, 3, 256, 256)
logits = v(img) # (4, 1000)

# do your usual training with ViT
# ...


# then, to finetune, just pass the ViT into the Adapter class
# you can do this for multiple Adapters, as shown below

adapter1 = Adapter(
vit = v,
num_classes = 2, # number of output classes for this specific task
num_memories_per_layer = 5 # number of learnable memories per layer, 10 was sufficient in paper
)

logits1 = adapter1(img) # (4, 2) - predict 2 classes off frozen ViT backbone with learnable memories and task specific head

# yet another task to finetune on, this time with 4 classes

adapter2 = Adapter(
vit = v,
num_classes = 4,
num_memories_per_layer = 10
)

logits2 = adapter2(img) # (4, 4) - predict 4 classes off frozen ViT backbone with learnable memories and task specific head

```

## Dino

Expand Down Expand Up @@ -1442,6 +1498,14 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```

```bibtex
@inproceedings{Sandler2022FinetuningIT,
title = {Fine-tuning Image Transformers using Learnable Memory},
author = {Mark Sandler and Andrey Zhmoginov and Max Vladymyrov and Andrew Jackson},
year = {2022}
}
```

```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},
Expand Down
Binary file added images/learnable-memory-vit.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.30.0',
version = '0.31.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',
Expand Down
216 changes: 216 additions & 0 deletions vit_pytorch/learnable_memory_vit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
import torch
from torch import nn
import torch.nn.functional as F

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helpers

def exists(val):
return val is not None

def pair(t):
return t if isinstance(t, tuple) else (t, t)

# controlling freezing of layers

def set_module_requires_grad_(module, requires_grad):
for param in module.parameters():
param.requires_grad = requires_grad

def freeze_all_layers_(module):
set_module_requires_grad_(module, False)

def unfreeze_all_layers_(module):
set_module_requires_grad_(module, True)

# classes

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads

self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)

self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)

self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)

self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)

def forward(self, x, attn_mask = None, memories = None):
x = self.norm(x)

x_kv = x # input for key / values projection

if exists(memories):
# add memories to key / values if it is passed in
memories = repeat(memories, 'n d -> b n d', b = x.shape[0]) if memories.ndim == 2 else memories
x_kv = torch.cat((x_kv, memories), dim = 1)

qkv = (self.to_q(x), *self.to_kv(x_kv).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

if exists(attn_mask):
dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max)

attn = self.attend(dots)
attn = self.dropout(attn)

out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))

def forward(self, x, attn_mask = None, memories = None):
for ind, (attn, ff) in enumerate(self.layers):
layer_memories = memories[ind] if exists(memories) else None

x = attn(x, attn_mask = attn_mask, memories = layer_memories) + x
x = ff(x) + x
return x

class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'

num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'

self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)

self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)

self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

def img_to_tokens(self, img):
x = self.to_patch_embedding(img)

cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = x.shape[0])
x = torch.cat((cls_tokens, x), dim = 1)

x += self.pos_embedding
x = self.dropout(x)
return x

def forward(self, img):
x = self.img_to_tokens(img)

x = self.transformer(x)

cls_tokens = x[:, 0]
return self.mlp_head(cls_tokens)

# adapter with learnable memories per layer, memory CLS token, and learnable adapter head

class Adapter(nn.Module):
def __init__(
self,
*,
vit,
num_memories_per_layer = 10,
num_classes = 2,
):
super().__init__()
assert isinstance(vit, ViT)

# extract some model variables needed

dim = vit.cls_token.shape[-1]
layers = len(vit.transformer.layers)
num_patches = vit.pos_embedding.shape[-2]

self.vit = vit

# freeze ViT backbone - only memories will be finetuned

freeze_all_layers_(vit)

# learnable parameters

self.memory_cls_token = nn.Parameter(torch.randn(dim))
self.memories_per_layer = nn.Parameter(torch.randn(layers, num_memories_per_layer, dim))

self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

# specialized attention mask to preserve the output of the original ViT
# it allows the memory CLS token to attend to all other tokens (and the learnable memory layer tokens), but not vice versa

attn_mask = torch.ones((num_patches, num_patches), dtype = torch.bool)
attn_mask = F.pad(attn_mask, (1, num_memories_per_layer), value = False) # main tokens cannot attend to learnable memories per layer
attn_mask = F.pad(attn_mask, (0, 0, 1, 0), value = True) # memory CLS token can attend to everything
self.register_buffer('attn_mask', attn_mask)

def forward(self, img):
b = img.shape[0]

tokens = self.vit.img_to_tokens(img)

# add task specific memory tokens

memory_cls_tokens = repeat(self.memory_cls_token, 'd -> b 1 d', b = b)
tokens = torch.cat((memory_cls_tokens, tokens), dim = 1)

# pass memories along with image tokens through transformer for attending

out = self.vit.transformer(tokens, memories = self.memories_per_layer, attn_mask = self.attn_mask)

# extract memory CLS tokens

memory_cls_tokens = out[:, 0]

# pass through task specific adapter head

return self.mlp_head(memory_cls_tokens)
2 changes: 1 addition & 1 deletion vit_pytorch/vit.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape

cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
Expand Down

0 comments on commit df656fe

Please sign in to comment.