forked from lucidrains/vit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
complete learnable memory ViT, for efficient fine-tuning and potentia…
…lly plays into continual learning
- Loading branch information
1 parent
4e6a42a
commit df656fe
Showing
5 changed files
with
282 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
import torch | ||
from torch import nn | ||
import torch.nn.functional as F | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def exists(val): | ||
return val is not None | ||
|
||
def pair(t): | ||
return t if isinstance(t, tuple) else (t, t) | ||
|
||
# controlling freezing of layers | ||
|
||
def set_module_requires_grad_(module, requires_grad): | ||
for param in module.parameters(): | ||
param.requires_grad = requires_grad | ||
|
||
def freeze_all_layers_(module): | ||
set_module_requires_grad_(module, False) | ||
|
||
def unfreeze_all_layers_(module): | ||
set_module_requires_grad_(module, True) | ||
|
||
# classes | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
|
||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
self.norm = nn.LayerNorm(dim) | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
self.dropout = nn.Dropout(dropout) | ||
|
||
self.to_q = nn.Linear(dim, inner_dim, bias = False) | ||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
|
||
def forward(self, x, attn_mask = None, memories = None): | ||
x = self.norm(x) | ||
|
||
x_kv = x # input for key / values projection | ||
|
||
if exists(memories): | ||
# add memories to key / values if it is passed in | ||
memories = repeat(memories, 'n d -> b n d', b = x.shape[0]) if memories.ndim == 2 else memories | ||
x_kv = torch.cat((x_kv, memories), dim = 1) | ||
|
||
qkv = (self.to_q(x), *self.to_kv(x_kv).chunk(2, dim = -1)) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | ||
|
||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | ||
|
||
if exists(attn_mask): | ||
dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max) | ||
|
||
attn = self.attend(dots) | ||
attn = self.dropout(attn) | ||
|
||
out = torch.matmul(attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), | ||
FeedForward(dim, mlp_dim, dropout = dropout) | ||
])) | ||
|
||
def forward(self, x, attn_mask = None, memories = None): | ||
for ind, (attn, ff) in enumerate(self.layers): | ||
layer_memories = memories[ind] if exists(memories) else None | ||
|
||
x = attn(x, attn_mask = attn_mask, memories = layer_memories) + x | ||
x = ff(x) + x | ||
return x | ||
|
||
class ViT(nn.Module): | ||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): | ||
super().__init__() | ||
image_height, image_width = pair(image_size) | ||
patch_height, patch_width = pair(patch_size) | ||
|
||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | ||
|
||
num_patches = (image_height // patch_height) * (image_width // patch_width) | ||
patch_dim = channels * patch_height * patch_width | ||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), | ||
nn.Linear(patch_dim, dim), | ||
) | ||
|
||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | ||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | ||
self.dropout = nn.Dropout(emb_dropout) | ||
|
||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
def img_to_tokens(self, img): | ||
x = self.to_patch_embedding(img) | ||
|
||
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = x.shape[0]) | ||
x = torch.cat((cls_tokens, x), dim = 1) | ||
|
||
x += self.pos_embedding | ||
x = self.dropout(x) | ||
return x | ||
|
||
def forward(self, img): | ||
x = self.img_to_tokens(img) | ||
|
||
x = self.transformer(x) | ||
|
||
cls_tokens = x[:, 0] | ||
return self.mlp_head(cls_tokens) | ||
|
||
# adapter with learnable memories per layer, memory CLS token, and learnable adapter head | ||
|
||
class Adapter(nn.Module): | ||
def __init__( | ||
self, | ||
*, | ||
vit, | ||
num_memories_per_layer = 10, | ||
num_classes = 2, | ||
): | ||
super().__init__() | ||
assert isinstance(vit, ViT) | ||
|
||
# extract some model variables needed | ||
|
||
dim = vit.cls_token.shape[-1] | ||
layers = len(vit.transformer.layers) | ||
num_patches = vit.pos_embedding.shape[-2] | ||
|
||
self.vit = vit | ||
|
||
# freeze ViT backbone - only memories will be finetuned | ||
|
||
freeze_all_layers_(vit) | ||
|
||
# learnable parameters | ||
|
||
self.memory_cls_token = nn.Parameter(torch.randn(dim)) | ||
self.memories_per_layer = nn.Parameter(torch.randn(layers, num_memories_per_layer, dim)) | ||
|
||
self.mlp_head = nn.Sequential( | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
# specialized attention mask to preserve the output of the original ViT | ||
# it allows the memory CLS token to attend to all other tokens (and the learnable memory layer tokens), but not vice versa | ||
|
||
attn_mask = torch.ones((num_patches, num_patches), dtype = torch.bool) | ||
attn_mask = F.pad(attn_mask, (1, num_memories_per_layer), value = False) # main tokens cannot attend to learnable memories per layer | ||
attn_mask = F.pad(attn_mask, (0, 0, 1, 0), value = True) # memory CLS token can attend to everything | ||
self.register_buffer('attn_mask', attn_mask) | ||
|
||
def forward(self, img): | ||
b = img.shape[0] | ||
|
||
tokens = self.vit.img_to_tokens(img) | ||
|
||
# add task specific memory tokens | ||
|
||
memory_cls_tokens = repeat(self.memory_cls_token, 'd -> b 1 d', b = b) | ||
tokens = torch.cat((memory_cls_tokens, tokens), dim = 1) | ||
|
||
# pass memories along with image tokens through transformer for attending | ||
|
||
out = self.vit.transformer(tokens, memories = self.memories_per_layer, attn_mask = self.attn_mask) | ||
|
||
# extract memory CLS tokens | ||
|
||
memory_cls_tokens = out[:, 0] | ||
|
||
# pass through task specific adapter head | ||
|
||
return self.mlp_head(memory_cls_tokens) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters