Train deep networks with PyTorch on the CIFAR-10 and CIFAR-100 datasets.
Train ResNet56 on CIFAR-10
- with batch size
128
- for
182
epochs - with initial learning rate
0.1
- and a piecewise constant learning rate decay function
- with a decay factor of
0.1
(default) at epochs91
and136
- using the first two GPUs
- storing
10
state checkpoints - and printing a progress bar
# setup options
MODEL=resnet56
BATCH_SIZE=128
NUM_EPOCHS=182
NUM_CKPTS=10
LR=0.1
DECAY_POLICY=pconst
LR_MILESTONES="91 136"
export CUDA_VISIBLE_DEVICES=0,1
# run
SCRIPT=main.py
python $SCRIPT \
--model ${MODEL} \
--batch_size ${BATCH_SIZE} \
--num_epochs ${NUM_EPOCHS} \
--num_ckpts ${NUM_CKPTS} \
--progress_bar \
--lr ${LR} \
--lr_decay_policy ${DECAY_POLICY} \
--lr_milestones ${LR_MILESTONES}
==> Preparing data..
Files already downloaded and verified
Files already downloaded and verified
==> Building resnet56 model..
Epoch: 0
[==>........................... 19/391 ..............................] Step: 1s392ms | Tot: 24s295ms | lr: 1.000e-01 | Loss: 2.173 | Acc: 17.393% (423/2432)
Model | Acc. |
---|---|
VGG16 | 92.64% |
ResNet18 | 93.02% |
ResNet50 | 93.62% |
ResNet101 | 93.75% |
MobileNetV2 | 94.43% |
ResNeXt29(32x4d) | 94.73% |
ResNeXt29(2x64d) | 94.82% |
DenseNet121 | 95.04% |
PreActResNet18 | 95.11% |
DPN92 | 95.16% |