- mxnet 1.5.0
- gluon-cv 0.5.0
Backbone: MobileNetv2, MobileNetv3 (Implement in gluon-cv)
assume you are in the directory $Optim_Hopenet/
.
- download 300W_LP and AFLW_2000-3D
- unzip
- get 'pitch, yaw ,roll ' from annotation file
# change the dataset path to your path
python data/gen_pose.py
python train.py --bs 128 --lr 0.001 --alpha 1 --lr_type cos --version small --width_mult 1 --use_fc 1 --net v3 --gpu 0 --prefix test
Backone | MAE(alpha=1) | MAE(alpha=2) | Mb |
---|---|---|---|
MobileFaceNet | 6.760 | 6.876 | 4.1 |
MobileNetv2 | 6.510 | 6.549 | 9.8 |
MobileNetv3 small | 6.660 | 6.706 | 7.5 |
MobileNetv3 large | 6.293 | 6.145 | 17.5 |
python test.py --test_type image --image test_res/test.jpg
test: python mxnet2caffe/inference.py
@InProceedings{Ruiz_2018_CVPR_Workshops,
author = {Ruiz, Nataniel and Chong, Eunji and Rehg, James M.},
title = {Fine-Grained Head Pose Estimation Without Keypoints},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2018}
}