Skip to content

Commit

Permalink
Check syntax of stitchnig detailed
Browse files Browse the repository at this point in the history
  • Loading branch information
LaurentBerger committed Jan 18, 2019
1 parent 79e13be commit 49a43df
Show file tree
Hide file tree
Showing 9 changed files with 104 additions and 31 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
61 changes: 57 additions & 4 deletions doc/tutorials/stitching/stitcher/stitcher.markdown
Original file line number Diff line number Diff line change
Expand Up @@ -96,10 +96,63 @@ or (dataset from professional book scanner):
Examples above expects POSIX platform, on windows you have to provide all files names explicitly
(e.g. `boat1.jpg` `boat2.jpg`...) as windows command line does not support `*` expansion.

See also
Stitching detailed (python opencv >4.0.1)
--------

If you want to study internals of the stitching pipeline or you want to experiment with detailed
configuration see
[stitching_detailed.cpp](https://github.com/opencv/opencv/tree/master/samples/cpp/stitching_detailed.cpp)
in `opencv/samples/cpp` folder.
configuration you can use stitching_detailed source code available in C++ or python

<H4>stitching_detailed</H4>
@add_toggle_cpp
[stitching_detailed.cpp](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/stitching_detailed.cpp)
@end_toggle

@add_toggle_python
[stitching_detailed.py](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/stitching_detailed.py)
@end_toggle

stitching_detailed program uses command line to get stitching parameter. Many parameters exists. Above examples shows some command line parameters possible :

boat5.jpg boat2.jpg boat3.jpg boat4.jpg boat1.jpg boat6.jpg --work_megapix 0.6 --features orb --matcher homography --estimator homography --match_conf 0.3 --conf_thresh 0.3 --ba ray --ba_refine_mask xxxxx --save_graph test.txt --wave_correct no --warp fisheye --blend multiband --expos_comp no --seam gc_colorgrad

![](images/fisheye.jpg)

Pairwise images are matched using an homography --matcher homography and estimator used for transformation estimation too --estimator homography

Confidence for feature matching step is 0.3 : --match_conf 0.3. You can decrease this value if you have some difficulties to match images

Threshold for two images are from the same panorama confidence is 0. : --conf_thresh 0.3 You can decrease this value if you have some difficulties to match images

Bundle adjustment cost function is ray --ba ray

Refinement mask for bundle adjustment is xxxxx ( --ba_refine_mask xxxxx) where 'x' means refine respective parameter and '_' means don't. Refine one, and has the following format: fx,skew,ppx,aspect,ppy

Save matches graph represented in DOT language to test.txt ( --save_graph test.txt) : Labels description: Nm is number of matches, Ni is number of inliers, C is confidence

![](images/gvedit.jpg)

Perform wave effect correction is no (--wave_correct no)

Warp surface type is fisheye (--warp fisheye)

Blending method is multiband (--blend multiband)

Exposure compensation method is not used (--expos_comp no)

Seam estimation estimator is Minimum graph cut-based seam (--seam gc_colorgrad)

you can use those arguments on command line too :

boat5.jpg boat2.jpg boat3.jpg boat4.jpg boat1.jpg boat6.jpg --work_megapix 0.6 --features orb --matcher homography --estimator homography --match_conf 0.3 --conf_thresh 0.3 --ba ray --ba_refine_mask xxxxx --wave_correct horiz --warp compressedPlaneA2B1 --blend multiband --expos_comp channels_blocks --seam gc_colorgrad

You will get :

![](images/compressedPlaneA2B1.jpg)

For images captured using a scanner or a drone ( affine motion) you can use those arguments on command line :

newspaper1.jpg newspaper2.jpg --work_megapix 0.6 --features surf --matcher affine --estimator affine --match_conf 0.3 --conf_thresh 0.3 --ba affine --ba_refine_mask xxxxx --wave_correct no --warp affine

![](images/affinepano.jpg)

You can find all images in https://github.com/opencv/opencv_extra/tree/master/testdata/stitching
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ class CV_EXPORTS_W Blender
@param corners Source images top-left corners
@param sizes Source image sizes
*/
CV_WRAP void prepare(const std::vector<Point> &corners, const std::vector<Size> &sizes);
CV_WRAP virtual void prepare(const std::vector<Point> &corners, const std::vector<Size> &sizes);
/** @overload */
CV_WRAP virtual void prepare(Rect dst_roi);
/** @brief Processes the image.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,8 @@ final transformation for each camera.
*/
class CV_EXPORTS_W AffineBasedEstimator : public Estimator
{
public:
CV_WRAP AffineBasedEstimator(){}
private:
virtual bool estimate(const std::vector<ImageFeatures> &features,
const std::vector<MatchesInfo> &pairwise_matches,
Expand Down
2 changes: 0 additions & 2 deletions modules/stitching/src/blenders.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,6 @@ void Blender::blend(InputOutputArray dst, InputOutputArray dst_mask)
dst_mask_.release();
}


void FeatherBlender::prepare(Rect dst_roi)
{
Blender::prepare(dst_roi);
Expand Down Expand Up @@ -231,7 +230,6 @@ MultiBandBlender::MultiBandBlender(int try_gpu, int num_bands, int weight_type)
weight_type_ = weight_type;
}


void MultiBandBlender::prepare(Rect dst_roi)
{
dst_roi_final_ = dst_roi;
Expand Down
68 changes: 44 additions & 24 deletions samples/python/stitching_detailed.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,8 +83,11 @@
parser.add_argument('--seam',action = 'store', default = 'no',help='Seam estimation method. The default is "gc_color".',type=str,dest = 'seam' )
parser.add_argument('--compose_megapix',action = 'store', default = -1,help='Resolution for compositing step. Use -1 for original resolution.',type=float,dest = 'compose_megapix' )
parser.add_argument('--expos_comp',action = 'store', default = 'no',help='Exposure compensation method. The default is "gain_blocks".',type=str,dest = 'expos_comp' )
parser.add_argument('--expos_comp_nr_feeds',action = 'store', default = 1,help='Number of exposure compensation feed.',type=np.int32,dest = 'expos_comp_nr_feeds' )
parser.add_argument('--expos_comp_nr_filtering',action = 'store', default = 2,help='Number of filtering iterations of the exposure compensation gains',type=float,dest = 'expos_comp_nr_filtering' )
parser.add_argument('--expos_comp_block_size',action = 'store', default = 32,help='BLock size in pixels used by the exposure compensator.',type=np.int32,dest = 'expos_comp_block_size' )
parser.add_argument('--blend',action = 'store', default = 'multiband',help='Blending method. The default is "multiband".',type=str,dest = 'blend' )
parser.add_argument('--blend_strength',action = 'store', default = 5,help='Blending strength from [0,100] range.',type=int,dest = 'blend_strength' )
parser.add_argument('--blend_strength',action = 'store', default = 5,help='Blending strength from [0,100] range.',type=np.int32,dest = 'blend_strength' )
parser.add_argument('--output',action = 'store', default = 'result.jpg',help='The default is "result.jpg"',type=str,dest = 'output' )
parser.add_argument('--timelapse',action = 'store', default = None,help='Output warped images separately as frames of a time lapse movie, with "fixed_" prepended to input file names.',type=str,dest = 'timelapse' )
parser.add_argument('--rangewidth',action = 'store', default = -1,help='uses range_width to limit number of images to match with.',type=int,dest = 'rangewidth' )
Expand Down Expand Up @@ -119,10 +122,16 @@
expos_comp_type = cv.detail.ExposureCompensator_GAIN
elif args.expos_comp=='gain_blocks':
expos_comp_type = cv.detail.ExposureCompensator_GAIN_BLOCKS
elif args.expos_comp=='channel':
expos_comp_type = cv.detail.ExposureCompensator_CHANNELS
elif args.expos_comp=='channel_blocks':
expos_comp_type = cv.detail.ExposureCompensator_CHANNELS_BLOCKS
else:
print("Bad exposure compensation method")
exit

exit()
expos_comp_nr_feeds = args.expos_comp_nr_feeds
expos_comp_nr_filtering = args.expos_comp_nr_filtering
expos_comp_block_size = args.expos_comp_block_size
match_conf = args.match_conf
seam_find_type = args.seam
blend_type = args.blend
Expand Down Expand Up @@ -180,7 +189,7 @@
img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT)
images.append(img)
if matcher_type== "affine":
matcher = cv.detail.AffineBestOf2NearestMatcher_create(False, try_cuda, match_conf)
matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf)
elif range_width==-1:
matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf)
else:
Expand All @@ -189,14 +198,14 @@
matcher.collectGarbage()
if save_graph:
f = open(save_graph_to,"w")
# f.write(matchesGraphAsString(img_names, pairwise_matches, conf_thresh))
f.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh))
f.close()
indices=cv.detail.leaveBiggestComponent(features,p,0.3)
img_subset =[]
img_names_subset=[]
full_img_sizes_subset=[]
num_images=len(indices)
for i in range(0,num_images):
for i in range(len(indices)):
img_names_subset.append(img_names[indices[i,0]])
img_subset.append(images[indices[i,0]])
full_img_sizes_subset.append(full_img_sizes[indices[i,0]])
Expand Down Expand Up @@ -273,26 +282,33 @@
masks.append(um)

warper = cv.PyRotationWarper(warp_type,warped_image_scale*seam_work_aspect) # warper peut etre nullptr?
for i in range(0,num_images):
K = cameras[i].K().astype(np.float32)
for idx in range(0,num_images):
K = cameras[idx].K().astype(np.float32)
swa = seam_work_aspect
K[0,0] *= swa
K[0,2] *= swa
K[1,1] *= swa
K[1,2] *= swa
corner,image_wp =warper.warp(images[i],K,cameras[i].R,cv.INTER_LINEAR, cv.BORDER_REFLECT)
corner,image_wp =warper.warp(images[idx],K,cameras[idx].R,cv.INTER_LINEAR, cv.BORDER_REFLECT)
corners.append(corner)
sizes.append((image_wp.shape[1],image_wp.shape[0]))
images_warped.append(image_wp)

p,mask_wp =warper.warp(masks[i],K,cameras[i].R,cv.INTER_NEAREST, cv.BORDER_CONSTANT)
masks_warped.append(mask_wp)
p,mask_wp =warper.warp(masks[idx],K,cameras[idx].R,cv.INTER_NEAREST, cv.BORDER_CONSTANT)
masks_warped.append(mask_wp.get())
images_warped_f=[]
for img in images_warped:
imgf=img.astype(np.float32)
images_warped_f.append(imgf)
compensator=cv.detail.ExposureCompensator_createDefault(expos_comp_type)
compensator.feed(corners, images_warped, masks_warped)
if cv.detail.ExposureCompensator_CHANNELS == expos_comp_type:
compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds)
# compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
elif cv.detail.ExposureCompensator_CHANNELS_BLOCKS == expos_comp_type:
compensator=cv.detail_BlocksChannelsCompensator(expos_comp_block_size, expos_comp_block_size,expos_comp_nr_feeds)
# compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering)
else:
compensator=cv.detail.ExposureCompensator_createDefault(expos_comp_type)
compensator.feed(corners=corners, images=images_warped, masks=masks_warped)
if seam_find_type == "no":
seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)
elif seam_find_type == "voronoi":
Expand Down Expand Up @@ -332,7 +348,7 @@
cameras[i].focal *= compose_work_aspect
cameras[i].ppx *= compose_work_aspect
cameras[i].ppy *= compose_work_aspect
sz = (full_img.shape[1] * compose_scale,full_img.shape[0] * compose_scale)
sz = (full_img_sizes[i][0] * compose_scale,full_img_sizes[i][1]* compose_scale)
K = cameras[i].K().astype(np.float32)
roi = warper.warpRoi(sz, K, cameras[i].R);
corners.append(roi[0:2])
Expand All @@ -353,21 +369,20 @@
seam_mask = cv.resize(dilated_mask,(mask_warped.shape[1],mask_warped.shape[0]),0,0,cv.INTER_LINEAR_EXACT)
mask_warped = cv.bitwise_and(seam_mask,mask_warped)
if blender==None and not timelapse:
blender = cv.detail.Blender_createDefault(1)
dst_sz = cv.detail.resultRoi(corners,sizes)
blend_strength=1
blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
dst_sz = cv.detail.resultRoi(corners=corners,sizes=sizes)
blend_width = np.sqrt(dst_sz[2]*dst_sz[3]) * blend_strength / 100
if blend_width < 1:
blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
elif blend_type == "MULTI_BAND":
blender = cv.detail.Blender_createDefault(cv.detail.Blender_MULTIBAND)
elif blend_type == "multiband":
blender = cv.detail_MultiBandBlender()
blender.setNumBands((np.log(blend_width)/np.log(2.) - 1.).astype(np.int))
elif blend_type == "FEATHER":
blender = cv.detail.Blender_createDefault(cv.detail.Blender_FEATHER)
elif blend_type == "feather":
blender = cv.detail_FeatherBlender()
blender.setSharpness(1./blend_width)
blender.prepare(corners, sizes)
blender.prepare(dst_sz)
elif timelapser==None and timelapse:
timelapser = cv.detail.createDefault(timelapse_type);
timelapser = cv.detail.Timelapser_createDefault(timelapse_type)
timelapser.initialize(corners, sizes)
if timelapse:
matones=np.ones((image_warped_s.shape[0],image_warped_s.shape[1]), np.uint8)
Expand All @@ -379,9 +394,14 @@
fixedFileName = img_names[idx][:pos_s + 1 ]+"fixed_" + img_names[idx][pos_s + 1: ]
cv.imwrite(fixedFileName, timelapser.getDst())
else:
blender.feed(image_warped_s, mask_warped, corners[idx])
blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx])
if not timelapse:
result=None
result_mask=None
result,result_mask = blender.blend(result,result_mask)
cv.imwrite(result_name,result)
zoomx =600/result.shape[1]
dst=cv.normalize(src=result,dst=None,alpha=255.,norm_type=cv.NORM_MINMAX,dtype=cv.CV_8U)
dst=cv.resize(dst,dsize=None,fx=zoomx,fy=zoomx)
cv.imshow(result_name,dst)
cv.waitKey()

0 comments on commit 49a43df

Please sign in to comment.