-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample_time.py
216 lines (205 loc) · 8.59 KB
/
sample_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import time
import os
import numpy as np
import torch.nn
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_percentage_error
import argparse
from tools.data_process import *
from tools.early_stop import EarlyStopping
from tools.tool import *
from copy import deepcopy
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='transformer', help='train model name')
parser.add_argument('--seed', default=42, help='random seed')
parser.add_argument('--epochs', default=200, help='epochs')
parser.add_argument('--dataset', default='abilene', help='chose dataset', choices=['geant', 'abilene'])
parser.add_argument('--gpu', default=1, help='use -1/0/1 chose cpu/gpu:0/gpu:1', choices=[-1, 0, 1])
parser.add_argument('--batch_size', '--bs', default=64*144, help='batch_size')
parser.add_argument('--learning_rate', '--lr', default=0.0001, help='learning_rate')
parser.add_argument('--seq_len', default=12, help='input history length')
parser.add_argument('--pre_len', default=1, help='prediction length')
parser.add_argument('--dim_model', default=32, help='dimension of embedding vector')
parser.add_argument('--dim_attn', default=32, help='dimension of attention')
parser.add_argument('--num_heads', default=1, help='attention heads')
parser.add_argument('--train_rate', default=0.7, help='')
parser.add_argument('--rnn_layers', default=3, help='rnn layers')
parser.add_argument('--encoder_layers', default=3, help='encoder layers')
parser.add_argument('--decoder_layers', default=1, help='decoder layers')
parser.add_argument('--dropout', default=0.5, help='dropout rate')
parser.add_argument('--early_stop', default=15, help='early stop patient epochs')
parser.add_argument('--loss', default='mse', help='loss fun',choices=['mse','mae','huber'])
parser.add_argument('--l2_loss', default=0, help='use l2 loss')
parser.add_argument('--rounds',default=5)
parser.add_argument('--sample_rate',default=0.5)
args = parser.parse_args()
if args.gpu == 1:
os.environ["CUDA_VISIBLE_DEVICES"] = "1,0"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# param
dataset = args.dataset
fea_path = get_data_path(dataset)
num_nodes = get_data_nodes(dataset)
num_flows = num_nodes * num_nodes
loss_func = args.loss
# hyper param
epoch = args.epochs
batch_size = args.batch_size
lr = args.learning_rate
seq_len = args.seq_len
pre_len = args.pre_len
em_size = args.dim_model
num_head = args.num_heads
train_rate = args.train_rate
rounds = args.rounds
sample_rate = args.sample_rate
################# data
# load data
data = np.load(fea_path)
ALL_TEST_MSE = []
ALL_TEST_MAE = []
ALL_PRE_TIME = []
ALL_TRAIN_TIME = []
for r in range(rounds):
early_stop = EarlyStopping(patience=args.early_stop)
# split dataset
train_x, train_y, val_x, val_y, test_x, test_y, max_data,train_start,train_end = split_dataset_sample_time(data, train_rate=train_rate,val_rate=0.1,
seq_len=seq_len,
predict_len=pre_len,sample_rate=sample_rate)
ALL_TRAIN_TIME.append([train_start,train_end])
# ndarray -> tensor
train_x, train_y, = torch.from_numpy(train_x).float(), torch.from_numpy(train_y).float()
val_x, val_y, = torch.from_numpy(val_x).float(), torch.from_numpy(val_y).float()
test_x, test_y, = torch.from_numpy(test_x).float(), torch.from_numpy(test_y).float()
# tensor dataset
train_dataset = TensorDataset(train_x, train_y)
val_dataset = TensorDataset(val_x, val_y)
test_dataset = TensorDataset(test_x, test_y)
# dataloader
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=8)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False, pin_memory=True, num_workers=8)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, pin_memory=False, num_workers=8)
################# model
model = get_model(args.model, args=args)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = get_loss_func(loss_func)
print(args)
# test_y = test_y*max_data
time_start = time.time()
train_losses = []
val_losses, val_maes, = [], []
MIN_MSE = 1e5
EPOCH = 1
best_model_dict = deepcopy(model.state_dict())
###### train ####
for e in range(1, epoch + 1):
model.train()
train_loss = 0.0
for x, y in tqdm(train_loader):
x, y = x.to(device), y.to(device)
y_hat = model(x)
loss = criterion(y_hat, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_losses.append(train_loss / len(train_loader))
# model val
eval_loss = 0.0
y_true = []
y_pred = []
with torch.no_grad():
model.eval()
for x, y in val_loader:
x, y = x.to(device), y.to(device)
x = x.reshape([-1,x.shape[-1]])
y_hat = model(x)
y = y.squeeze(-1)
y_hat = y_hat.reshape([-1,num_flows])
loss = criterion(y_hat, y)
y = y.cpu().detach().numpy()
y_hat = y_hat.cpu().detach().numpy()
y_pred.extend(y_hat)
y_true.extend(y)
eval_loss += loss.item()
eval_loss = eval_loss / len(test_loader)
y_true, y_pred = np.array(y_true), np.array(y_pred)
# print(test_loss)
# mse,ame,rmse,r2,mape
val_mse = mean_squared_error(y_true, y_pred)
val_mae = mean_absolute_error(y_true, y_pred)
val_losses.append(val_mse)
val_maes.append(val_mae)
if val_mse < MIN_MSE:
MIN_MSE = val_mse
best_model_dict = deepcopy(model.state_dict())
EPOCH = e
print('*MIN VAL LOSS:{:.6} at epoch {}'.format(MIN_MSE, EPOCH))
if early_stop(val_mse):
break
print('Epoch:{}'.format(e),
'train_mse:{:.6}'.format(train_losses[-1]),
'val_mse:{:.6}'.format(val_losses[-1]),
'val_mae:{:.6}'.format(val_maes[-1]),
)
time_end = time.time()
ts = time.strftime("%m-%d_%H:%M:%S", time.localtime())
print(ts)
torch.save(best_model_dict,
'dict/' + model.__class__.__name__+ "_" + args.dataset + "_" + str(seq_len) + "-" + str(pre_len) + "_" + ts + '_dict.pkl')
print((time_end - time_start) / 3600, 'h')
print(args)
index = val_losses.index(np.min(val_losses))
print(
'min_mse:%r' % (val_losses[index]),
'min_mae:%r' % (val_maes[index]),
)
########## test ###########
test_start = time.time()
model.load_state_dict(best_model_dict)
y_true, y_pred = [], []
pre_time = []
with torch.no_grad():
model.eval()
for x, y in test_loader:
x, y = x.to(device), y.to(device)
x = x.reshape([-1,x.shape[-1]])
temp_time = time.time()
y_hat = model(x)
temp_time = time.time() - temp_time
y = y.squeeze(-1)
y_hat = y_hat.reshape([-1,num_flows])
loss = criterion(y_hat, y)
y = y.cpu().detach().numpy()
y_hat = y_hat.cpu().detach().numpy()
pre_time.append(temp_time / y.shape[0])
y_pred.extend(y_hat)
y_true.extend(y)
y_true, y_pred = np.array(y_true), np.array(y_pred)
mse = mean_squared_error(y_true, y_pred)
mae = mean_absolute_error(y_true, y_pred)
print('TEST RESULT:',
'mse:{:.6}'.format(mse),
'mae:{:.6}'.format(mae),
)
test_end = time.time()
print("test time: ", (time_end - time_start), ' S')
print("predict time for single matrix:",np.mean(pre_time), 'S' )
ALL_PRE_TIME.append(np.mean(pre_time))
ALL_TEST_MAE.append(mae)
ALL_TEST_MSE.append(mse)
print('############# Conclusion ###########')
print('ALL TEST MSE:')
print(ALL_TEST_MSE)
print(np.mean(ALL_TEST_MSE), " ± " ,np.std(ALL_TEST_MSE))
print('ALL TEST MAE:')
print(ALL_TEST_MAE)
print(np.mean(ALL_TEST_MAE), " ± " ,np.std(ALL_TEST_MAE))
print('ALL SAMPLE TIME:')
print(ALL_TRAIN_TIME)
print('ALL TEST PRE TIME:')
print(ALL_PRE_TIME)
print(np.mean(ALL_PRE_TIME), " ± " ,np.std(ALL_PRE_TIME))