Skip to content

GaelVaroquaux/skrub

 
 

dirty_cat

dirty_cat logo

py_ver pypi_var pypi_dl codecov circleci

dirty_cat is a Python module for machine-learning on dirty categorical variables.

Website: https://dirty-cat.github.io/

dirty_cat's SuperVectorizer automatically turns pandas data frames into numerical arrays suitable for learning.

For a detailed description of the problem of encoding dirty categorical data, see Similarity encoding for learning with dirty categorical variables [1] and Encoding high-cardinality string categorical variables [2].

Installation

Dependencies

dirty_cat requires:

  • Python (>= 3.8)
  • NumPy (>= 1.17.3)
  • SciPy (>= 1.4.0)
  • scikit-learn (>= 0.22.0)
  • pandas (>= 1.1.5)

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip

pip install -U --user dirty_cat

Other implementations

References

[1]Patricio Cerda, Gaël Varoquaux, Balázs Kégl. Similarity encoding for learning with dirty categorical variables. 2018. Machine Learning journal, Springer.
[2]Patricio Cerda, Gaël Varoquaux. Encoding high-cardinality string categorical variables. 2020. IEEE Transactions on Knowledge & Data Engineering.

About

Prepping tables for machine learning

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 96.7%
  • Shell 3.3%