This project implements the partially homomorphic Paillier algorithm and extends and optimizes encryption, decryption, matrix multiplication, and other operations on Numpy matrices, thereby enhancing speed.
Main reference project:https://github.com/data61/python-paillier
If there is a need for distributed computing, this project contains a Paillier implementation that I rewrote using Dask. It can perform distributed encryption, decryption, and computation using Dask's distribute functionality. However, it is worth noting that this is merely an experimental project.
pip install paillier_numpy
import numpy as np
from paillier import generate_paillier_keypair
# create public key and private key
p,q = generate_paillier_keypair()
# create random float
data = np.random.random_sample((100, 100))
# encrypt
encry = p.encrypt(data)
# decrypt
decry = q.decrypt(encry)
p, q = generate_paillier_keypair()
data = np.random.random((2, 2))
encry = p.encrypt(data)
# float
encry2 = encry + 3.1415926
print(q.decrypt(encry2) == data + 3.1415926)
# int
encry3 = encry + 666
print(q.decrypt(encry3) == data + 666)
# matrix float
data2 = np.random.random_sample((2, 2))
encry4 = encry + data2
print(q.decrypt(encry4) == data + data2)
# matrix int
data2 = np.random.randint(-100,100,(2, 2))
encry5 = encry + data2
print(q.decrypt(encry5) == data + data2)
p, q = generate_paillier_keypair()
data = np.random.random((2, 2))
encry = p.encrypt(data)
# int
encry2 = encry * 2
print(q.decrypt(encry2)==data*2)
# float
encry2 = encry * 3.141592
print(q.decrypt(encry2)==data*3.141592)
Note: When performing matrix multiplication, there may be slight errors due to precision issues in the 16th decimal place.
p, q = generate_paillier_keypair()
data = np.random.random((2, 2))
data2 = np.random.random_sample((2,3))
encry = p.encrypt(data)
# [A].dot(B)
encry2 = encry.dot(data2)
print(q.decrypt(encry2)==data.dot(data2))
# B.dot([A])
# !!!!!!!!!!!!!!!!!!!!!!
# [A] must be converted to Numpy.ndarray
encry3 = data2.T.dot(encry.toArray())
print(q.decrypt(encry3)==data2.T.dot(data))
Note: The sample code is as follows: where partitions
is the number of blocks the matrix is divided into for multiprocessing use.
p, q = generate_paillier_keypair()
data = np.random.random((1000, 100))
data2 = np.random.random_sample((1000,100))
encry = p.encrypt(data)
# time : 0:00:00.624028
decry = q.decrypt(encry)
# time : 0:01:06.076635
encry = p.encrypt(data, is_pool=True, partitions=10)
# time : 0:00:00.282844
decry = q.decrypt(encry, is_pool=True, partitions=10)
# time : 0:00:04.417449
Note: Recommend using multi-process matrix multiplication
p, q = generate_paillier_keypair()
data = np.random.random((100, 10))
data2 = np.random.random_sample((10,100))
encry = p.encrypt(data)
encry2 = encry.dot(data2)
# time cost: 0:00:21.922967
encry2 = p.encrypt(data, is_pool=True, partitions=10)
encry3 = encry2.dot(data2,is_pool=True,partitions=10)
# time cost: 0:00:01.600504