forked from rbgirshick/py-faster-rcnn
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c70cf0d
commit acb591a
Showing
5 changed files
with
118 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
#!/usr/bin/env python | ||
|
||
# -------------------------------------------------------- | ||
# Fast R-CNN | ||
# Copyright (c) 2015 Microsoft | ||
# Licensed under The MIT License [see LICENSE for details] | ||
# Written by Ross Girshick | ||
# -------------------------------------------------------- | ||
|
||
import _init_paths | ||
from fast_rcnn.config import cfg | ||
from fast_rcnn.test import im_detect | ||
from utils.cython_nms import nms | ||
from utils.timer import Timer | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import caffe, cPickle, os, cv2 | ||
|
||
CLASSES = ('__background__', | ||
'aeroplane', 'bicycle', 'bird', 'boat', | ||
'bottle', 'bus', 'car', 'cat', 'chair', | ||
'cow', 'diningtable', 'dog', 'horse', | ||
'motorbike', 'person', 'pottedplant', | ||
'sheep', 'sofa', 'train', 'tvmonitor') | ||
|
||
def vis_detections(im, class_name, dets, thresh=0.5): | ||
"""Draw detected bounding boxes.""" | ||
inds = np.where(dets[:, -1] >= thresh)[0] | ||
if len(inds) == 0: | ||
return | ||
|
||
im = im[:, :, (2, 1, 0)] | ||
fig, ax = plt.subplots(figsize=(14, 14)) | ||
ax.imshow(im, aspect='equal') | ||
for i in inds: | ||
bbox = dets[i, :4] | ||
score = dets[i, -1] | ||
|
||
ax.add_patch( | ||
plt.Rectangle((bbox[0], bbox[1]), | ||
bbox[2] - bbox[0], | ||
bbox[3] - bbox[1], fill=False, | ||
edgecolor='red', linewidth=3.5) | ||
) | ||
ax.text(bbox[0], bbox[1] - 2, | ||
'{:s} {:.3f}'.format(class_name, score), | ||
bbox=dict(facecolor='blue', alpha=0.5), | ||
fontsize=14, color='white') | ||
|
||
ax.set_title(('All {} detections with ' | ||
'score >= {:.1f}').format(class_name, thresh), | ||
fontsize=18) | ||
plt.axis('off') | ||
plt.tight_layout() | ||
plt.show() | ||
|
||
def demo(net, image_name, classes): | ||
"""Detect object classes in an image using pre-computed object proposals.""" | ||
|
||
# Load pre-computed Selected Search object proposals | ||
box_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', | ||
image_name + '_boxes.pkl') | ||
with open(box_file, 'rb') as f: | ||
obj_proposals = cPickle.load(f) | ||
|
||
# Load the demo image | ||
im_file = os.path.join(cfg.ROOT_DIR, 'data', 'demo', image_name + '.jpg') | ||
im = cv2.imread(im_file) | ||
|
||
# Detect all object classes and regress object bounds | ||
timer = Timer() | ||
timer.tic() | ||
scores, boxes = im_detect(net, im, obj_proposals) | ||
timer.toc() | ||
print ('Detection took {:.3f}s for ' | ||
'{:d} object proposals').format(timer.total_time, boxes.shape[0]) | ||
|
||
# Visualize detections for each class | ||
CONF_THRESH = 0.8 | ||
NMS_THRESH = 0.3 | ||
for cls in classes: | ||
cls_ind = CLASSES.index(cls) | ||
cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] | ||
cls_scores = scores[:, cls_ind] | ||
dets = np.hstack((cls_boxes, | ||
cls_scores[:, np.newaxis])).astype(np.float32) | ||
keep = nms(dets, NMS_THRESH) | ||
dets = dets[keep, :] | ||
print 'All {} detections with score >= {:.1f}'.format(cls, CONF_THRESH) | ||
print 'Close image window (ctrl-w) to continue' | ||
vis_detections(im, cls, dets, thresh=CONF_THRESH) | ||
|
||
if __name__ == '__main__': | ||
gpu_id = 0 | ||
prototxt = 'models/VGG16/test.prototxt' | ||
caffemodel = ('data/fast_rcnn_models/' | ||
'vgg16_fast_rcnn_iter_40000.caffemodel') | ||
# prototxt = 'models/VGG_CNN_M_1024/test.prototxt' | ||
# caffemodel = ('data/fast_rcnn_models/' | ||
# 'vgg_cnn_m_1024_fast_rcnn_iter_40000.caffemodel') | ||
|
||
if not os.path.isfile(caffemodel): | ||
raise IOError(('{:s} not found.\nDid you run ./data/script/' | ||
'fetch_fast_rcnn_models.sh?').format(caffemodel)) | ||
|
||
caffe.set_mode_gpu() | ||
caffe.set_device(gpu_id) | ||
net = caffe.Net(prototxt, caffemodel, caffe.TEST) | ||
|
||
print '\n\nLoaded network {:s}'.format(caffemodel) | ||
|
||
print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' | ||
print 'Demo for data/demo/000004.jpg' | ||
demo(net, '000004', ('car',)) | ||
|
||
print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' | ||
print 'Demo for data/demo/001551.jpg' | ||
demo(net, '001551', ('sofa', 'tvmonitor')) |