-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b85d8dc
commit ef98106
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
from os import listdir | ||
from os.path import isfile, join | ||
import re | ||
import nltk | ||
import nltk.data | ||
from nltk.tokenize import RegexpTokenizer | ||
from nltk.corpus import stopwords | ||
from sklearn.feature_extraction.text import TfidfVectorizer | ||
from sklearn.metrics.pairwise import cosine_similarity | ||
from sklearn.linear_model import Perceptron | ||
debug = False | ||
|
||
def files_to_features(path): | ||
onlyfiles = [f for f in listdir(path) if isfile(join(path, f))] | ||
features = [] | ||
number_of_docs = 0 | ||
for file in onlyfiles: | ||
if(file == "a.txt"): | ||
continue | ||
fp = open(path + '\\' + file, 'r') | ||
document = fp.read() | ||
doc_lower = re.sub('(\.)?(\n)+','. ',document).lower() | ||
vec = TfidfVectorizer() | ||
Y = vec.fit_transform([doc_lower]) | ||
tokenizer = nltk.data.load('tokenizers/punkt/portuguese.pickle') | ||
doc_lower = '\n-----\n'.join(tokenizer.tokenize(doc_lower)) | ||
sentences = doc_lower.split('\n-----\n') | ||
fp.close() | ||
|
||
X = vec.fit_transform(sentences) | ||
matrix = cosine_similarity(X, Y) | ||
|
||
for i in range(0, len(matrix)): | ||
features.append([i, matrix[i][0]]) | ||
|
||
number_of_docs += 1 | ||
if(debug): | ||
print("\n++++++++++++++++++++++\n") | ||
print("\n++++++++++++++++++++++\n") | ||
if(number_of_docs == 1): | ||
break | ||
return features | ||
|
||
def files_to_class(source_path, sums_path): | ||
stop = set(stopwords.words('portuguese')) | ||
sourcefiles = [f for f in listdir(source_path) if isfile(join(source_path, f))] | ||
sumsfiles = [f for f in listdir(sums_path) if isfile(join(sums_path, f))] | ||
|
||
classification = [] | ||
number_of_docs = 0 | ||
i = 0 | ||
for source, summary in zip(sourcefiles, sumsfiles): | ||
if(summary != "Sum-" + source): | ||
continue | ||
tokenizer = nltk.data.load('tokenizers/punkt/portuguese.pickle') | ||
fsrc = open(source_path + '\\' + source, 'r') | ||
src_doc = re.sub('(\.)?(\n)+','. ', fsrc.read()).lower() | ||
src_doc = '\n-----\n'.join(tokenizer.tokenize(src_doc)) | ||
src_sentences = src_doc.split('\n-----\n') | ||
fsrc.close() | ||
tokenizer = nltk.data.load('tokenizers/punkt/portuguese.pickle') | ||
fsum = open(sums_path + '\\' + summary, 'r') | ||
sum_doc = re.sub('(\.)?(\n)+','. ', fsum.read()).lower() | ||
sum_doc = '\n-----\n'.join(tokenizer.tokenize(sum_doc)) | ||
sum_sentences = sum_doc.split('\n-----\n') | ||
fsum.close() | ||
f = open('output.txt', 'w+') | ||
|
||
cl = [0 for k in range(len(src_sentences))] | ||
for i in range(0, len(src_sentences)): | ||
words_in_sum = 0 | ||
for word in src_sentences[i].split(): | ||
count = 0 | ||
for smry in sum_sentences: | ||
if((smry in src_sentences[i]) or (src_sentences[i] in smry)): | ||
if(smry == "."): | ||
continue | ||
cl[i] = 1 | ||
break | ||
if((word in smry) and (word not in stop)): | ||
count += 1 | ||
if(count > len(sum_sentences)*0.2): | ||
words_in_sum += 1 | ||
if(words_in_sum > len(src_sentences[i])*0.5): | ||
cl[i] = 1 | ||
classification.append(cl[i]) | ||
f.close() | ||
number_of_docs += 1 | ||
if(debug): | ||
print("\n++++++++++++++++++++++\n") | ||
print(source) | ||
print("\n++++++++++++++++++++++\n") | ||
if(number_of_docs == 1): | ||
break | ||
return classification | ||
|
||
def train(): | ||
features = files_to_features('.\\train\\source') | ||
cl = files_to_class('.\\train\\source', '.\\train\\sums') | ||
if(len(features) != len(cl)): | ||
print("Mismatch summaries and source files\n") | ||
return -1 | ||
p = Perceptron() | ||
model = p.fit(features, cl) | ||
print(model.coef_) | ||
return 0 | ||
|
||
train() | ||
# files_to_class('.\\train\\source', '.\\train\\sums') |