Skip to content

Commit

Permalink
add vivit
Browse files Browse the repository at this point in the history
  • Loading branch information
lucidrains committed Oct 24, 2022
1 parent c0eb4c0 commit 13fabf9
Show file tree
Hide file tree
Showing 4 changed files with 209 additions and 1 deletion.
39 changes: 39 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [3D Vit](#3d-vit)
- [ViVit](#vivit)
- [Parallel ViT](#parallel-vit)
- [Learnable Memory ViT](#learnable-memory-vit)
- [Dino](#dino)
Expand Down Expand Up @@ -1022,6 +1023,34 @@ video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, widt
preds = v(video) # (4, 1000)
```

## ViViT

<img src="./images/vivit.png" width="350px"></img>

This <a href="https://arxiv.org/abs/2103.15691">paper</a> offers 3 different types of architectures for efficient attention of videos, with the main theme being factorizing the attention across space and time. This repository will offer the first variant, which is a spatial transformer followed by a temporal one.

```python
import torch
from vit_pytorch.vivit import ViT

v = ViT(
image_size = 128, # image size
frames = 16, # number of frames
image_patch_size = 16, # image patch size
frame_patch_size = 2, # frame patch size
num_classes = 1000,
dim = 1024,
spatial_depth = 6, # depth of the spatial transformer
temporal_depth = 6, # depth of the temporal transformer
heads = 8,
mlp_dim = 2048
)

video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)

preds = v(video) # (4, 1000)
```

## Parallel ViT

<img src="./images/parallel-vit.png" width="350px"></img>
Expand Down Expand Up @@ -1805,6 +1834,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
```

```bibtex
@article{Arnab2021ViViTAV,
title = {ViViT: A Video Vision Transformer},
author = {Anurag Arnab and Mostafa Dehghani and Georg Heigold and Chen Sun and Mario Lucic and Cordelia Schmid},
journal = {2021 IEEE/CVF International Conference on Computer Vision (ICCV)},
year = {2021},
pages = {6816-6826}
}
```

```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},
Expand Down
Binary file added images/vivit.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.36.2',
version = '0.37.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description_content_type = 'text/markdown',
Expand Down
169 changes: 169 additions & 0 deletions vit_pytorch/vivit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
import torch
from torch import nn

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

# helpers

def pair(t):
return t if isinstance(t, tuple) else (t, t)

# classes

class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)

self.heads = heads
self.scale = dim_head ** -0.5

self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)

self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()

def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)

dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale

attn = self.attend(dots)
attn = self.dropout(attn)

out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)

class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x

class ViT(nn.Module):
def __init__(
self,
*,
image_size,
image_patch_size,
frames,
frame_patch_size,
num_classes,
dim,
spatial_depth,
temporal_depth,
heads,
mlp_dim,
pool = 'cls',
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)

assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'

num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size

assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'

self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.Linear(patch_dim, dim),
)

self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim))

self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout)

self.pool = pool
self.to_latent = nn.Identity()

self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

def forward(self, img):
x = self.to_patch_embedding(img)
b, f, n, _ = x.shape

spatial_cls_tokens = repeat(self.spatial_cls_token, '1 1 d -> b f 1 d', b = b, f = f)
x = torch.cat((spatial_cls_tokens, x), dim = 2)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)

x = rearrange(x, 'b f n d -> (b f) n d')

# attend across space

x = self.spatial_transformer(x)

x = rearrange(x, '(b f) n d -> b f n d', b = b)

# excise out the spatial cls tokens for temporal attention

x = x[:, :, 0]

# append temporal CLS tokens

temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b)

x = torch.cat((temporal_cls_tokens, x), dim = 1)

# attend across time

x = self.temporal_transformer(x)

x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

x = self.to_latent(x)
return self.mlp_head(x)

0 comments on commit 13fabf9

Please sign in to comment.