auto-wing is a tool that uses LLM to assist automated testing, give your automated testing wings.
auto-wing是一个利用LLM辅助自动化测试的工具, 为你的自动化测试插上翅膀。
⭐ 支持多种操作:ai_action
、ai_query
、ai_assert
。
⭐ 支持多模型:openai
、qwen
和 deepseek
。
⭐ 支持 playwright
、selenium
。
⭐ 方便的和现有自动化项目(pytest
、unittest
)集成。
pip install autowing
方法一
申请LLM需要的key,在项目的根目录下创建.env
文件。推荐qwen
和 deepseek
,一是便宜,二是方便。
- openai: https://platform.openai.com/
#.env
AUTOWING_MODEL_PROVIDER=openai
OPENAI_API_KEY==sk-proj-abdefghijklmnopqrstwvwxyz0123456789
- DeepSeek: https://platform.deepseek.com/
#.env
AUTOWING_MODEL_PROVIDER=deepseek
DEEPSEEK_API_KEY=sk-abdefghijklmnopqrstwvwxyz0123456789
- 阿里云百练(千问):https://bailian.console.aliyun.com/
#.env
AUTOWING_MODEL_PROVIDER=qwen
DASHSCOPE_API_KEY=sk-abdefghijklmnopqrstwvwxyz0123456789
- 火山方舟(豆包):https://console.volcengine.com/
AUTOWING_MODEL_PROVIDER=doubao
ARK_API_KEY=f61d2846-xxx-xxx-xxxx-xxxxxxxxxxxxx
DOUBAO_MODEL_NAME=ep-20250207200649-xxx
方法二
如果不想使用python-dotenv配置环境变量,可以直接配置环境变量。
export AUTOWING_MODEL_PROVIDER=deepseek
export DEEPSEEK_API_KEY=sk-abdefghijklmnopqrstwvwxyz0123456789
其他LLM模型环境变量同样的方式配置。
import pytest
from playwright.sync_api import Page, sync_playwright
from autowing.playwright.fixture import create_fixture
from dotenv import load_dotenv
@pytest.fixture(scope="session")
def page():
"""playwright page fixture"""
# load .env file config
load_dotenv()
with sync_playwright() as p:
browser = p.chromium.launch(headless=False)
context = browser.new_context()
page = context.new_page()
yield page
context.close()
browser.close()
@pytest.fixture
def ai(page):
"""ai fixture"""
ai_fixture = create_fixture()
return ai_fixture(page)
def test_bing_search(page: Page, ai):
# 访问必应
page.goto("https://cn.bing.com")
# 使用AI执行搜索
ai.ai_action('搜索输入框输入"playwright"关键字,并回车')
page.wait_for_timeout(3000)
# 使用AI查询搜索结果
items = ai.ai_query('string[], 搜索结果列表中包含"playwright"相关的标题')
# 验证结果
assert len(items) > 1
# 使用AI断言
assert ai.ai_assert('检查搜索结果列表第一条标题是否包含"playwright"字符串')
运行日志:
> pytest test_playwright_pytest.py -s
================================================= test session starts =================================================
platform win32 -- Python 3.12.3, pytest-8.3.4, pluggy-1.5.0
rootdir: D:\github\seldomQA\auto-wing
configfile: pyproject.toml
plugins: base-url-2.1.0, playwright-0.6.2
collected 1 item
test_playwright_pytest.py 2025-02-04 10:00:30.961 | INFO | autowing.playwright.fixture:ai_action:88 - 🪽 AI Action: 搜索输入框输入"playwright"关键字,并回车
2025-02-04 10:00:40.070 | INFO | autowing.playwright.fixture:ai_query:162 - 🪽 AI Query: string[], 搜索结果列表中包 含"playwright"相关的标题
2025-02-04 10:00:48.954 | DEBUG | autowing.playwright.fixture:ai_query:218 - 📄 Query: ['Playwright 官方文档 | Playwright', 'Playwright - 快速、可靠的端到端测试框架', 'Playwright 中文文档 | Playwright', 'Playwright 入门指南 | Playwright', 'Playwright 测试框架 | Playwright', 'Playwright 教程 | Playwright', 'Playwright 使用指南 | Playwright', 'Playwright 自动化测试工具 | Playwright', 'Playwright 安装与配置 | Playwright', 'Playwright 示例代码 | Playwright']
2025-02-04 10:00:48.954 | INFO | autowing.playwright.fixture:ai_assert:267 - 🪽 AI Assert: 检查搜索结果列表第一条标 题是否包含"playwright"字符串
.
================================================= 1 passed in 27.99s ==================================================
1.提供更详细的描述以及样例
提供详细描述和示例一直是非常有用的提示词技巧。
错误示例 ❌: "搜'耳机'"
正确示例 ✅: "找到搜索框(搜索框的上方应该有区域切换按钮,如 '国内', '国际'),输入'耳机',敲回车"
错误示例 ❌: "断言:外卖服务正在正常运行"
正确示例 ✅: "断言:界面上有个“外卖服务”的板块,并且标识着“正常”"
2.一个 Prompt (指令)只做一件事
尽管 auto-wing 有自动重规划能力,但仍应保持指令简洁。否则,LLM 的输出可能会变得混乱。指令的长度对 token 消耗的影响几乎可以忽略不计。
错误示例 ❌:"点击登录按钮,然后点击注册按钮,在表单中输入'[email protected]'作为邮箱,'test'作为密码,然后点击注册按钮"
正确示例 ✅: 将任务分解为三个步骤:"点击登录按钮" "点击注册按钮" "在表单中输入'[email protected]'作为邮箱,'test'作为密码,然后点击注册按钮"
3.从界面做推断,而不是 DOM 属性或者浏览器状态
所有传递给 LLM 的数据都是截图和元素坐标。DOM和浏览器 对 LLM 来说几乎是不可见的。因此,务必确保你想提取的信息都在截图中有所体现且能被 LLM “看到”。
正确示例 ✅:标题是蓝色的
错误实例 ❌:标题有个 test-id-size 属性
错误实例 ❌:浏览器有两个 tab 开着
错误实例 ❌:异步请求已经结束了
4.中、英文提示词无影响
由于大多数 AI 模型可以理解多种语言,所以请随意用你喜欢的语言撰写提示指令。即使提示语言与页面语言不同,通常也是可行的。
欢迎添加微信,交流和反馈问题。