My personal project for the final assignment of Class Machine Vision Application in SCUT.
This is an example of how to list things you need to use the software and how to install them.
- opencv-python
- opencv-contrib-python <= 3.4.0.10 (for SIFT & SURF algorithem can be used.)
- numpy
- matplotlib
Here is the structure of the whole system:
We use the traditional ways to process the images, rather than the deep-learning methods.
After your running vein_main.py
, you should see the histogram of the scores between inter-class and in-class.
So we can set the threshold value to 60 for classification.
python vein_main.py
Besides, you should dive into the file vein_main.py
, and adjust the comments for many other usages.
I didn' t upload all of my own vein data for individual privacy.
You should place your own vein data in the ./data/600/2
folder and name it like the format below.
├──data
│ ├── 600 // A Person's vein image
│ │ ├── 1 // the first machine
│ │ ├── 2 // the second machine
│ │ │ ├── 600-1-1-1.bmp
│ │ │ ├── 600-1-2-1.bmp
│ │ │ ├── 600-1-3-1.bmp
│ │ │ ├── ...
│ │ │ ├── 600-2-1-1.bmp
│ │ │ ├── 600-2-2-1.bmp
│ │ │ ├── 600-2-3-1.bmp
│ │ │ ├── ...
│ ├── roi_600_2_all_320240 //saved ROI
│ │ ├── 600-1-1-1.bmp
│ │ ├── 600-1-2-1.bmp
│ │ ├── 600-1-3-1.bmp
│ │ ├── ...
The MIT License (MIT)
Copyright © 2020 https://github.com/Qingcsai