Skip to content

A short tutorial to help beginners in biostatistics and genomics understand an usual single-cell RNA-sequencing workflow

Notifications You must be signed in to change notification settings

HectorRDB/NationalAssembly

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A short tutorial to help beginners in biostatistics and genomics understand an usual single-cell RNA-sequencing workflow

Hector Roux de Bézieux May 2018

Aim

Single-cell RNA-sequencing (scRNA-seq) is a very potent biological tool used for many applications. A far from exhaustive list would include identifying new cell types, finding differentially expressed (DE) genes, and discovering lineages among cells. To get an overview of the principle, see here.

However, the usual framework might seem a little daunting for beginners and, while many well-crafted tutorials exists, they all share the same idea: use a biological dataset as an example. Here, we want to use a dataset that would be more understandable to a broader public to explain the usual steps in scRNA-seq analysis

Description

The data consists of the record of votes of all delegates of the legislature (2012-2017) of the French parliament. Only some basics on data analysis are needed to understand this tutorial. Knowledge of R helps to understand the code but is not necessary to follow along.

To access the tutorial, see here.

Thanks

Special thanks to Vincent Viers for the initial inspiration of this project. The code used for scraping the data is based on the blog post https://freakonometrics.hypotheses.org/50973.

About

A short tutorial to help beginners in biostatistics and genomics understand an usual single-cell RNA-sequencing workflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published