-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ec7f7d8
commit 144aaf6
Showing
5 changed files
with
74 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,48 @@ | ||
# MarkovGNNR | ||
# MarkovGNN | ||
MarkovGNN: Graph Neural Networks using Markov Diffusion. This repository is only for WWW2022 submission. | ||
|
||
## System requirements | ||
Users will need to install the following tools (CPU version). | ||
``` | ||
PyTorch: 1.7.0 | ||
PyTorch-Geometric 1.6.1 | ||
PyTorchSparse 0.6.8 | ||
PyTorch Scatter 2.0.5 | ||
PyTorch Cluster 1.5.8 | ||
PyTorch Spline Conv 1.2.0 | ||
NetworkX: 2.2 | ||
scikit-learn: 0.23.2 | ||
Matplotlib: 3.0.3 | ||
``` | ||
|
||
## How to run | ||
A sample of command to run GNN models. More will be added. | ||
A list of sample commands to run the MarkovGCN models. | ||
``` | ||
python main.py --edgelist datasets/input2f/email.edgelist --label datasets/input2f/email.nodes.labels | ||
python main.py --edgelist datasets/input2f/usaairports.edgelist --label datasets/input2f/usaairports.nodes.labels --oneindexed 1 | ||
python main.py --edgelist datasets/input2f/yeast.edgelist --label datasets/input2f/yeast.nodes.labels --oneindexed 1 --onelabeled 1 | ||
python main.py --edgelist datasets/input3f/squirrel_edges.txt --label datasets/input3f/squirrel_labels.txt --feature datasets/input3f/squirrel_features.txt | ||
python main.py --edgelist datasets/input2f/email.edgelist --label datasets/input2f/email.nodes.labels --eps 0.005 --epoch 200 --alpha 0.1 --nlayers 3 | ||
python main.py --edgelist datasets/input2f/usaairports.edgelist --label datasets/input2f/usaairports.nodes.labels --oneindexed 1 --epoch 200 --alpha 1.0 --eps 0.09 --lrate 0.01 --nlayers 4 --normrow 0 --inflate 1.5 --markov_agg | ||
python main.py --edgelist datasets/input2f/yeast.edgelist --label datasets/input2f/yeast.nodes.labels --oneindexed 1 --onelabeled 1 --eps 0.25 --epoch 200 --inflate 1.5 --lrate 0.05 --alpha 0.7 --markov_agg --nlayers 3 | ||
python main.py --edgelist datasets/input3f/chameleon_edges.txt --label datasets/input3f/chameleon_labels.txt --feature datasets/input3f/chameleon_features.txt --epoch 200 --alpha 0.2 --nlayers 2 --eps 0.06 --inflate 1.8 --droprate 0.7 --markov_agg | ||
python main.py --edgelist datasets/input3f/squirrel_edges.txt --label datasets/input3f/squirrel_labels.txt --feature datasets/input3f/squirrel_features.txt --epoch 200 --eps 0.05 --droprate 0.25 --markov_agg --nlayers 6 --markov_agg | ||
python main.py --eps 0.03 --droprate 0.85 --epoch 300 --alpha 0.05 --nlayers 2 --lrate 0.005 --inflate 1.8 --markov_agg | ||
python main.py --eps 0.03 --droprate 0.85 --epoch 300 --alpha 0.05 --nlayers 2 --lrate 0.001 --inflate 3.5 --markov_agg --dataset Citeseer | ||
python main.py --edgelist datasets/input3f/actor_edges.txt --label datasets/input3f/actor_labels.txt --feature datasets/input3f/actor_features.txt --epoch 200 --alpha 0.4 --markov_agg --nlayers 4 | ||
python main.py --edgelist datasets/input3f/actor_edges.txt --label datasets/input3f/actor_labels.txt --feature datasets/input3f/actor_features.txt --epoch 200 --alpha 0.8 --markov_agg --nlayers 5 | ||
``` | ||
|
||
## Parameters | ||
There are several options to run the method which are outlined in the main.py file. | ||
``` | ||
--markov_dense -> markov process uses dense matrix multiplication (sparse matrix multiplicaiton is the default option) | ||
--markov_agg -> i-th layer uses a markov matrix from i-th iteration, this option with higher threshold will produce better runtime | ||
--use_gcn -> use vanilla GCN model | ||
``` | ||
|
||
Please create an issue if you face any problem to run this method. We hope to respond anonymously. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters