Skip to content

Commit

Permalink
Organize examples into Multimodal and Unimodal categories (PreferredA…
Browse files Browse the repository at this point in the history
  • Loading branch information
saghiles authored Jan 7, 2020
1 parent ddc3882 commit b3a91b9
Showing 1 changed file with 22 additions and 14 deletions.
36 changes: 22 additions & 14 deletions examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,14 +16,22 @@

----

## Examples by Algorithm
## Multimodal Algorithms (Using Auxiliary Data)

[biased_mf.py](biased_mf.py) - Matrix Factorization (MF) with biases.

[bpr_netflix.py](bpr_netflix.py) - Example to run Bayesian Personalized Ranking (BPR) with Netflix dataset.
### Graph

[c2pf_example.py](c2pf_example.py) - Collaborative Context Poisson Factorization (C2PF) with Amazon Office dataset.

[mcf_office.py](mcf_office.py) - Fit Matrix Co-Factorization (MCF) to the Amazon Office dataset.

[pcrl_example.py](pcrl_example.py) - Probabilistic Collaborative Representation Learning (PCRL) Amazon Office dataset.

[sbpr_epinions.py](sbpr_epinions.py) - Social Bayesian Personalized Ranking (SBPR) with Epinions dataset.

[sorec_filmtrust.py](sorec_filmtrust.py) - Social Recommendation using PMF (Sorec) with FilmTrust dataset.

### Text

[cdl_example.py](cdl_example.py) - Collaborative Deep Learning (CDL) with CiteULike dataset.

[cdr_example.py](cdr_example.py) - Collaborative Deep Ranking (CDR) with CiteULike dataset.
Expand All @@ -38,26 +46,26 @@

[hft_example.py](hft_example.py) - Hidden Factor Topic (HFT) with MovieLen 1m dataset.

[ibpr_example.py](ibpr_example.py) - Example to run Indexable Bayesian Personalized Ranking.
### Image

[mcf_office.py](mcf_office.py) - Fit Matrix Co-Factorization (MCF) to the Amazon Office dataset.
[vbpr_tradesy.py](vbpr_tradesy.py) - Visual Bayesian Personalized Ranking (VBPR) with Tradesy dataset.

## Unimodal Algorithms

[biased_mf.py](biased_mf.py) - Matrix Factorization (MF) with biases.

[bpr_netflix.py](bpr_netflix.py) - Example to run Bayesian Personalized Ranking (BPR) with Netflix dataset.

[ibpr_example.py](ibpr_example.py) - Example to run Indexable Bayesian Personalized Ranking.

[ncf_example.py](ncf_example.py) - Neural Collaborative Filtering (GMF, MLP, NeuMF) with Amazon Clothing dataset.

[nmf_example.py](nmf_example.py) - Non-negative Matrix Factorization (NMF) with RatioSplit.

[pcrl_example.py](pcrl_example.py) - Probabilistic Collaborative Representation Learning (PCRL) Amazon Office dataset.

[pmf_ratio.py](pmf_ratio.py) - Probabilistic Matrix Factorization (PMF) with RatioSplit.

[sbpr_epinions.py](sbpr_epinions.py) - Social Bayesian Personalized Ranking (SBPR) with Epinions dataset.

[svd_example.py](svd_example.py) - Singular Value Decomposition (SVD) with MovieLens dataset.

[sorec_filmtrust.py](sorec_filmtrust.py) - Social Recommendation using PMF (Sorec) with FilmTrust dataset.

[vaecf_citeulike.py](vaecf_citeulike.py) - Variational Autoencoder for Collaborative Filtering (VAECF) with CiteULike dataset.

[vbpr_tradesy.py](vbpr_tradesy.py) - Visual Bayesian Personalized Ranking (VBPR) with Tradesy dataset.

[wmf_example.py](wmf_example.py) - Weighted Matrix Factorization with CiteULike dataset.

0 comments on commit b3a91b9

Please sign in to comment.