Ideal input image size is 256 x 64, tiling will be used if images exceed these dimensions.
Usage: python inference_mlpsrgan.py -n mlp-srgan-d-1 -i infile -o outfile [options]...
-h show this help
-i --input Input image or folder | for 3D medical images use axial plane. Default: inputs
-o --output Output folder. Default: results
-n --model_name Model name. Default: mlp-srgan-d-1
-s, --outscale The final upsampling scale of the image (only 4 is available at the moment). Default: 4
--suffix Suffix of the restored image. Default: out
-t, --tile Tile size, 0 for no tile during testing. Default: 0
--fp16 Use fp16 precision during inference. Default: fp32 (single precision).
--ext Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
To build docker from source download the source code here and run the following docker build command:
docker build -t samirmitha/mlp-srgan:1.0.0 .
The docker image can be pulled directly from dockerhub using the following command:
docker pull samirmitha/mlp-srgan:1.0.0
The docker can also be run directly on CODIDO!
Pretrained models are available on Google Drive at the following link: https://drive.google.com/drive/folders/1q4f1Yzraqtgdplw9dAtbdtWLGSm7vzHx?usp=sharing
If you have any questions please email [email protected]
.
https://arxiv.org/abs/2303.06298
@misc{mitha_choe_maralani_moody_khademi_2023,
title={MLP-SRGAN: A single-dimension super resolution gan using MLP-mixer},
url={https://arxiv.org/abs/2303.06298},
journal={arXiv.org},
author={Mitha, Samir and Choe, Seungho and Maralani, Pejman Jahbedar and Moody, Alan R. and Khademi, April},
year={2023},
month={Mar}
}
https://www.torontomu.ca/akhademi/
This repository uses the PyTorch MLP-Mixer.
This repository uses the format provided by BasicSR. Please check out the repository!
This work is inspired by Real-ESRGAN for natural images.