MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized open source implementation of the Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyping and deployment of optimized workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.
- AMD OpenVX
- AMD OpenVX Extensions
- Applications
- Neural Net Model Compiler & Optimizer
- Samples
- Toolkit
- Utilities
- Prerequisites
- Build & Install MIVisionX
- Verify the Installation
- Docker
- Release Notes
AMD OpenVX (amd_openvx) is a highly optimized open source implementation of the Khronos OpenVX computer vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small embedded x86 CPUs and large workstation discrete GPUs.
The OpenVX framework provides a mechanism to add new vision functions to OpenVX by 3rd party vendors. This project has below mentioned OpenVX modules and utilities to extend amd_openvx project, which contains the AMD OpenVX Core Engine.
- amd_loomsl: AMD Radeon Loom stitching library for live 360 degree video applications
- amd_nn: OpenVX neural network module
- amd_opencv: OpenVX module that implements a mechanism to access OpenCV functionality as OpenVX kernels
- amd_winml: WinML extension will allow developers to import a pre-trained ONNX model into an OpenVX graph and add hundreds of different pre & post processing
vision
/generic
/user-defined
functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model. This will allow developers to build an end to end application for inference.
MIVisionX has a number of applications built on top of OpenVX modules, it uses AMD optimized libraries to build applications which can be used to prototype or used as models to develop a product.
- Cloud Inference Application: This sample application does inference using a client-server system.
- Digit Test: This sample application is used to recognize hand written digits.
- MIVisionX OpenVX Classsification: This sample application shows how to run supported pre-trained caffe models with MIVisionX RunTime.
- MIVisionX WinML Classification: This sample application shows how to run supported ONNX models with MIVisionX RunTime on Windows.
- MIVisionX WinML YoloV2: This sample application shows how to run tiny yolov2(20 classes) with MIVisionX RunTime on Windows.
- External Applications
Neural Net Model Compiler & Optimizer (model_compiler) converts pre-trained neural net models to MIVisionX runtime code for optimized inference.
MIVisionX Toolkit, is a comprehensive set of help tools for neural net creation, development, training, and deployment. The Toolkit provides you with helpful tools to design, develop, quantize, prune, retrain, and infer your neural network work in any framework. The Toolkit is designed to help you deploy your work to any AMD or 3rd party hardware, from embedded to servers.
MIVisionX provides you with tools for accomplishing your tasks throughout the whole neural net life-cycle, from creating a model to deploying them for your target platforms.
- inference_generator: generate inference library from pre-trained CAFFE models
- loom_shell: an interpreter to prototype 360 degree video stitching applications using a script
- RunVX: command-line utility to execute OpenVX graph described in GDF text file
- RunCL: command-line utility to build, execute, and debug OpenCL programs
- CPU: SSE4.1 or above CPU, 64-bit
- GPU: GFX7 or above [optional]
- APU: Carrizo or above [optional]
Note: Some modules in MIVisionX can be built for CPU only. To take advantage of advanced features and modules we recommend using AMD GPUs or AMD APUs.
- Windows 10
- Windows SDK
- Visual Studio 2017
- Install the latest drivers and OpenCL SDK
- OpenCV 3.4
- Set
OpenCV_DIR
environment variable toOpenCV/build
folder - Add
%OpenCV_DIR%\x64\vc14\bin
or%OpenCV_DIR%\x64\vc15\bin
to yourPATH
- Set
- Install ROCm
- ROCm CMake, MIOpenGEMM & MIOpen for Neural Net Extensions (vx_nn)
- CMake 2.8 or newer download
- Qt Creator for Cloud Inference Client
- Protobuf for inference generator & model compiler
- install
libprotobuf-dev
andprotobuf-compiler
needed for vx_nn
- install
- OpenCV 3.4
- Set
OpenCV_DIR
environment variable toOpenCV/build
folder
- Set
- FFMPEG n4.0.4 - Optional
- FFMPEG is required for amd_media & mv_deploy modules
For the convenience of the developer, we here provide the setup script which will install all the dependencies required by this project.
MIVisionX-setup.py builds all the prerequisites required by MIVisionX. The setup script creates a deps folder and installs all the prerequisites, this script only needs to be executed once. If directory option is not given, the script will install deps folder in the home directory(~/) by default, else in the user specified location.
- Ubuntu
16.04
/18.04
or CentOS7.5
/7.6
- ROCm supported hardware
- ROCm
usage:
python MIVisionX-setup.py --directory [setup directory - optional]
--installer [Package management tool - optional (default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
--miopen [MIOpen Version - optional (default:1.8.1)]
--ffmpeg [FFMPEG Installation - optional (default:no) [options:Install ffmpeg - yes]]
Note: use --installer yum
for CentOS
Refer to Wiki page for developer instructions.
- MIVisionX-installer.msi: MIVisionX
- MIVisionX_WinML-installer.msi: MIVisionX for WinML
- Install OpenCL SDK
- Install OpenCV with/without contrib to support camera capture, image display, & opencv extensions
- Set
OpenCV_DIR
environment variable toOpenCV/build
folder - Add
%OpenCV_DIR%\x64\vc14\bin
or%OpenCV_DIR%\x64\vc15\bin
to yourPATH
- Set
- Use
MIVisionX.sln
to build for x64 platform
NOTE: vx_nn is not supported on Windows in this release
- Ubuntu
16.04
/18.04
or CentOS7.5
/7.6
- ROCm supported hardware
- ROCm
sudo apt-get install mivisionx
sudo yum install mivisionx
Note:
- vx_winml is not supported on linux
- source code will not available with apt-get/yum install
- executables placed in
/opt/rocm/mivisionx/bin
and libraries in/opt/rocm/mivisionx/lib
- OpenVX and module header files into
/opt/rocm/mivisionx/include
- model compiler, toolkit, & samples placed in
/opt/rocm/mivisionx
- Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions
- Install ROCm
- Use the below commands to setup and build MIVisionX
git clone https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX.git
cd MIVisionX
python MIVisionX-setup.py --directory [setup directory - optional]
--installer [Package management tool - optional (default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
--miopen [MIOpen Version - optional (default:1.8.1)]
--ffmpeg [FFMPEG Installation - optional (default:no) [options:Install ffmpeg - yes]]
Note: Use --installer yum
for CentOS
mkdir build
cd build
cmake ../
make -j8
sudo make install
Note:
- vx_winml is not supported on Linux
- the installer will copy all executables into
/opt/rocm/mivisionx/bin
and libraries into/opt/rocm/mivisionx/lib
- the installer also copies all the OpenVX and module header files into
/opt/rocm/mivisionx/include
folder
- Install ROCm
- git clone, build and install other ROCm projects (using
cmake
and% make install
) in the below order for vx_nn.- rocm-cmake
- MIOpenGEMM
- MIOpen -- make sure to use
-DMIOPEN_BACKEND=OpenCL
option with cmake
- install protobuf
- install OpenCV
- install FFMPEG n4.0.4 - Optional
- build and install (using
cmake
and% make install
)- executables will be placed in
bin
folder - libraries will be placed in
lib
folder - the installer will copy all executables into
/opt/rocm/mivisionx/bin
and libraries into/opt/rocm/mivisionx/lib
- the installer also copies all the OpenVX and OpenVX module header files into
/opt/rocm/mivisionx/include
folder
- executables will be placed in
- add the installed library path to LD_LIBRARY_PATH environment variable (default
/opt/rocm/mivisionx/lib
) - add the installed executable path to PATH environment variable (default
/opt/rocm/mivisionx/bin
)
-
The installer will copy all executables into
/opt/rocm/mivisionx/bin
and libraries into/opt/rocm/mivisionx/lib
-
The installer also copies all the OpenVX and OpenVX module header files into
/opt/rocm/mivisionx/include
folder -
Apps, Samples, Documents, Model Compiler and Toolkit are placed into
/opt/rocm/mivisionx
-
Run samples to verify the installation
- Canny Edge Detection
export PATH=$PATH:/opt/rocm/mivisionx/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf
Note: More samples are available here
MIVisionX provides developers with docker images for Ubuntu 16.04, Ubuntu 18.04, CentOS 7.5, & CentOS 7.6. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.
- Ubuntu
16.04
- rocm supported hardware
- Step 1 - Install rocm-dkms
sudo apt update
sudo apt dist-upgrade
sudo apt install libnuma-dev
sudo reboot
wget -qO - http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list
sudo apt update
sudo apt install rocm-dkms
sudo reboot
- Step 2 - Setup Docker
sudo apt-get install curl
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
sudo apt-get update
apt-cache policy docker-ce
sudo apt-get install -y docker-ce
sudo systemctl status docker
- Step 3 - Get Docker Image
sudo docker pull mivisionx/ubuntu-16.04
- Step 4 - Run the docker image
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/ubuntu-16.04
- Optional: Map localhost directory on the docker image
- option to map the localhost directory with trained caffe models to be accessed on the docker image.
- usage: -v {LOCAL_HOST_DIRECTORY_PATH}:{DOCKER_DIRECTORY_PATH}
sudo docker run -it -v /home/:/root/hostDrive/ --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/ubuntu-16.04
Note: Display option with docker
- Using host display
xhost +local:root
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host --env DISPLAY=unix$DISPLAY --privileged --volume $XAUTH:/root/.Xauthority --volume /tmp/.X11-unix/:/tmp/.X11-unix mivisionx/ubuntu-16.04:latest
- Test display with MIVisionX sample
export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf
- Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions
- Windows 10
- Linux: Ubuntu -
16.04
/18.04
& CentOS -7.5
/7.6
- ROCm: rocm-dkms -
2.6.22
- rocm-cmake - github master:ac45c6e
- MIOpenGEMM - 1.1.5
- MIOpen - 2.0.0
- Protobuf - V3.5.2
- OpenCV - 3.4.0
- Dependencies for all the above packages