forked from tywang89/mlin40
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
61 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from sklearn import metrics | ||
import statsmodels.api as sm | ||
import patsy | ||
|
||
# data acquisition | ||
stats = pd.read_table('/Users/wangtianyi/Documents/python_work/regression.csv') | ||
point = stats.iloc[:,4] / 38 | ||
rating = stats.iloc[:,5] | ||
|
||
# linear regression with statsmodels | ||
rating_add = sm.add_constant(rating) | ||
est_simple = sm.OLS(point,rating_add).fit() | ||
linear_error = metrics.mean_squared_error(point, est_simple.fittedvalues) | ||
|
||
# polynomial fitting with numpy | ||
poly_model = np.polyfit(rating, point, 10) | ||
xx = np.linspace(rating.min(), rating.max(), 100) | ||
poly_value = np.polyval(poly_model, xx) | ||
poly_error = metrics.mean_squared_error(point, np.polyval(poly_model, rating)) | ||
|
||
spline_data = stats.iloc[:,[4,5]] | ||
# a small pertubation is applied to distinguish identical ratings | ||
spline_data['Ratings'] = spline_data['Ratings'].map(lambda x: x + np.random.normal(0, 1e-5)) | ||
spline_data['Points'] = spline_data['Points'].map(lambda x: x / 38) | ||
# ascending sorted data for spline regression | ||
spline_data = spline_data.sort_values(by=['Ratings']).values | ||
|
||
# generating cubic spline with 3 knots at quantiles | ||
transformed_x = patsy.dmatrix("cr(spline_data[:,1], knots=(6.74,6.88,7.02))") | ||
# fitting generalised linear model on transformed dataset | ||
cubicspline = sm.GLM(spline_data[:,0], transformed_x).fit() | ||
# predicted value for error calculation | ||
pred = cubicspline.predict(patsy.dmatrix("cr(spline_data[:,1], knots=(6.74,6.88,7.02))")) | ||
spline_error = metrics.mean_squared_error(point, pred) | ||
# data for plot | ||
pred_smooth = cubicspline.predict(patsy.dmatrix("cr(xx, knots=(6.74,6.88,7.02))")) | ||
|
||
plt.figure(1) | ||
plt.plot(rating, est_simple.fittedvalues, c="r", linewidth=4, label = "RMSE = {}".format(linear_error)) | ||
plt.plot(xx, poly_value, c="g", linewidth=4, label = "RMSE = {}".format(poly_error)) | ||
plt.scatter(rating, point, c="b", s=4) | ||
plt.ylim(0.5, 3) | ||
plt.xlabel("average rating") | ||
plt.ylabel("average point per game") | ||
plt.title("Simple Linear Regression") | ||
plt.legend() | ||
|
||
plt.figure(2) | ||
plt.plot(rating, est_simple.fittedvalues, c="r", linewidth=4, label = 'Linear') | ||
plt.plot(xx, pred_smooth, c="g", linewidth=4, label = 'CubicSpline') | ||
plt.scatter(rating, point, c="b", s=4) | ||
plt.ylim(0.5, 3) | ||
plt.xlabel("average rating") | ||
plt.ylabel("average point per game") | ||
plt.title("Spline Regression") | ||
plt.legend() | ||
|
||
plt.show() |