forked from tywang89/mlin40
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
159 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import statsmodels.api as sm | ||
|
||
rawstat = pd.read_table('/Users/wangtianyi/Documents/python_work/poisson regression.csv') | ||
offensive = rawstat.iloc[:,[0,1,2,3,4,5]] | ||
goal = rawstat.iloc[:,6] | ||
|
||
offensive_add = sm.add_constant(offensive) | ||
poisson_result = sm.GLM(goal, offensive_add, family=sm.families.Poisson()).fit() | ||
print(poisson_result.summary()) | ||
|
||
offensive_reduced = offensive.iloc[:,[1,2,5]] | ||
offensive_add = sm.add_constant(offensive_reduced) | ||
poisson_result = sm.GLM(goal, offensive_add, family=sm.families.Poisson()).fit() | ||
print(poisson_result.summary()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import scipy as sp | ||
import matplotlib.pyplot as plt | ||
from sklearn import svm | ||
|
||
ratio = [] | ||
|
||
rawstat = pd.read_table('/Users/wangtianyi/Documents/python_work/linear inseparable.csv') | ||
category = rawstat.iloc[:,0] | ||
pass_ratio = rawstat.iloc[:,1] / rawstat.iloc[:,2] | ||
shot_ratio = rawstat.iloc[:,3] / rawstat.iloc[:,4] | ||
|
||
ratio.append(pass_ratio) | ||
ratio.append(shot_ratio) | ||
ratio = np.array(ratio) | ||
ratio = ratio.astype('float') | ||
|
||
linear_svm = svm.SVC(kernel='linear', C=1e10).fit(ratio.T, category) | ||
|
||
x_min, x_max = ratio[0].min() - 0.05, ratio[0].max() + 0.05 | ||
y_min, y_max = ratio[1].min() - 0.05, ratio[1].max() + 0.05 | ||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01)) | ||
xy = np.vstack([xx.ravel(), yy.ravel()]).T | ||
Z = linear_svm.decision_function(xy).reshape(xx.shape) | ||
|
||
plt.scatter(pass_ratio[category == 0], shot_ratio[category == 0], c='r', marker = 'o') | ||
plt.scatter(pass_ratio[category == 1], shot_ratio[category == 1], c='b', marker = '^') | ||
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) | ||
plt.title("playing style discrimination with SVM") | ||
plt.xlabel('pass ratio') | ||
plt.ylabel('shot ratio') | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import pandas as pd | ||
import numpy as np | ||
import scipy as sp | ||
import matplotlib.pyplot as plt | ||
from sklearn import svm | ||
|
||
ratio = [] | ||
|
||
rawstat = pd.read_table('/Users/wangtianyi/Documents/python_work/linear inseparable.csv') | ||
category = rawstat.iloc[:,0] | ||
pass_ratio = rawstat.iloc[:,1] / rawstat.iloc[:,2] | ||
shot_ratio = rawstat.iloc[:,3] / rawstat.iloc[:,4] | ||
|
||
ratio.append(pass_ratio) | ||
ratio.append(shot_ratio) | ||
ratio = np.array(ratio) | ||
ratio = ratio.astype('float') | ||
|
||
linear_svm = svm.SVC(kernel='rbf', gamma=5, C=1e6).fit(ratio.T, category) | ||
|
||
x_min, x_max = ratio[0].min() - 0.05, ratio[0].max() + 0.05 | ||
y_min, y_max = ratio[1].min() - 0.05, ratio[1].max() + 0.05 | ||
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01)) | ||
xy = np.vstack([xx.ravel(), yy.ravel()]).T | ||
Z = linear_svm.decision_function(xy).reshape(xx.shape) | ||
|
||
plt.scatter(pass_ratio[category == 0], shot_ratio[category == 0], c='r', marker = 'o') | ||
plt.scatter(pass_ratio[category == 1], shot_ratio[category == 1], c='b', marker = '^') | ||
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) | ||
plt.title("playing style discrimination with kernel SVM") | ||
plt.xlabel('pass ratio') | ||
plt.ylabel('shot ratio') | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
category long pass short pass header shot kick shot | ||
0.00 52.00 767.00 2.00 12.00 | ||
0.00 61.00 557.00 2.00 17.00 | ||
0.00 48.00 624.00 2.00 17.00 | ||
0.00 41.00 735.00 2.00 11.00 | ||
0.00 41.00 643.00 4.00 24.00 | ||
0.00 34.00 743.00 5.00 20.00 | ||
0.00 49.00 647.00 5.00 13.00 | ||
0.00 42.00 887.00 3.00 18.00 | ||
0.00 43.00 804.00 1.00 14.00 | ||
0.00 56.00 902.00 1.00 14.00 | ||
0.00 45.00 614.00 1.00 8.00 | ||
0.00 45.00 774.00 0.00 12.00 | ||
0.00 36.00 734.00 2.00 13.00 | ||
0.00 31.00 803.00 3.00 23.00 | ||
0.00 31.00 774.00 0.00 24.00 | ||
0.00 48.00 591.00 0.00 14.00 | ||
0.00 33.00 842.00 2.00 21.00 | ||
0.00 57.00 433.00 2.00 18.00 | ||
0.00 49.00 895.00 3.00 11.00 | ||
0.00 37.00 824.00 2.00 20.00 | ||
0.00 39.00 632.00 1.00 14.00 | ||
0.00 41.00 857.00 2.00 16.00 | ||
0.00 51.00 660.00 1.00 10.00 | ||
0.00 44.00 814.00 2.00 19.00 | ||
0.00 51.00 685.00 0.00 19.00 | ||
0.00 70.00 663.00 2.00 18.00 | ||
0.00 43.00 706.00 2.00 17.00 | ||
0.00 51.00 635.00 0.00 9.00 | ||
0.00 46.00 970.00 0.00 13.00 | ||
0.00 60.00 818.00 0.00 17.00 | ||
0.00 51.00 955.00 1.00 17.00 | ||
0.00 47.00 595.00 3.00 17.00 | ||
0.00 77.00 474.00 0.00 17.00 | ||
0.00 51.00 995.00 3.00 16.00 | ||
0.00 43.00 864.00 0.00 19.00 | ||
0.00 59.00 743.00 3.00 12.00 | ||
0.00 31.00 861.00 1.00 18.00 | ||
0.00 41.00 599.00 1.00 12.00 | ||
1.00 76.00 213.00 4.00 12.00 | ||
1.00 73.00 198.00 3.00 5.00 | ||
1.00 58.00 312.00 5.00 5.00 | ||
1.00 68.00 457.00 1.00 11.00 | ||
1.00 65.00 257.00 3.00 3.00 | ||
1.00 67.00 236.00 2.00 5.00 | ||
1.00 72.00 253.00 2.00 7.00 | ||
1.00 75.00 347.00 0.00 5.00 | ||
1.00 70.00 271.00 1.00 6.00 | ||
1.00 69.00 210.00 3.00 4.00 | ||
1.00 71.00 399.00 2.00 7.00 | ||
1.00 59.00 359.00 2.00 5.00 | ||
1.00 74.00 220.00 0.00 5.00 | ||
1.00 69.00 374.00 2.00 6.00 | ||
1.00 79.00 373.00 6.00 14.00 | ||
1.00 74.00 373.00 2.00 5.00 | ||
1.00 75.00 253.00 3.00 3.00 | ||
1.00 51.00 432.00 1.00 11.00 | ||
1.00 67.00 464.00 4.00 13.00 | ||
1.00 71.00 374.00 8.00 9.00 | ||
1.00 71.00 297.00 4.00 10.00 | ||
1.00 68.00 381.00 0.00 10.00 | ||
1.00 86.00 310.00 4.00 11.00 | ||
1.00 80.00 326.00 4.00 11.00 | ||
1.00 60.00 210.00 0.00 3.00 | ||
1.00 80.00 288.00 2.00 6.00 | ||
1.00 65.00 401.00 3.00 5.00 | ||
1.00 83.00 372.00 2.00 8.00 | ||
1.00 74.00 331.00 3.00 6.00 | ||
1.00 69.00 347.00 0.00 6.00 | ||
1.00 83.00 308.00 3.00 8.00 | ||
1.00 92.00 367.00 3.00 5.00 | ||
1.00 62.00 473.00 1.00 14.00 | ||
1.00 68.00 274.00 4.00 6.00 | ||
1.00 69.00 334.00 3.00 10.00 | ||
1.00 76.00 309.00 1.00 8.00 | ||
1.00 70.00 165.00 3.00 6.00 | ||
1.00 60.00 356.00 1.00 6.00 |