This repository was archived by the owner on Mar 28, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNTLFraction.py
261 lines (192 loc) · 7.59 KB
/
NTLFraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# -*- coding: utf-8 -*-
import fractions
import math
import numbers
import operator
# 連分數類
# 基于分数類,增加转化、逼近等功能
from .NTLGreatestCommonDivisor import greatestCommonDivisor
from .NTLUtilities import jsceil, jsint, jsfloor, jsround, jsstring, ispy3
from .NTLValidations import int_check
__all__ = ['Fraction']
nickname = 'Fraction'
'''Usage sample:
print('7700/2145 = ', end=' ')
rst_ = Fraction('7699/2145')
dst_ = Fraction(1, 2145)
print(rst_ + dst_)
'''
if ispy3:
_PyHASH_MODULUS = fractions._PyHASH_MODULUS
_PyHASH_INF = fractions._PyHASH_INF
FractionBase = fractions.Fraction
class Fraction(FractionBase):
__all__ = ['numerator', 'denominator', 'fraction', 'convergent', 'number']
__slots__ = ('_numerator', '_denominator', '_fraction', '_convergent', '_number')
##########################################################################
# Properties.
##########################################################################
@property
def number(a):
return a._number
@property
def fraction(a):
return a._fraction
@property
def convergent(a):
return a._convergent
##########################################################################
# Data models.
##########################################################################
def __new__(cls, numerator=0, denominator=None):
# Expand into continued fraction.
def expand(fraction):
x = fraction
a = jsfloor(x)
x -= a
_fraction = [a]
p_1 = a; p_2 = 1
q_1 = 1; q_2 = 0
_convergent = [FractionBase(a, 1)]
while x != 0:
x = 1 / x
a = jsfloor(x)
x -= a
_fraction.append(a)
p_1, p_2 = p_1 * a + p_2, p_1
q_1, q_2 = q_1 * a + q_2, q_1
_convergent.append(FractionBase(p_1, q_1))
return _fraction, _convergent
if denominator is None:
if isinstance(numerator, Fraction):
# Construct with Fraction instance.
self = super(Fraction, cls).__new__(cls)
self._fraction = numerator._fraction
self._convergent = numerator._convergent
self._number = numerator._number
self._numerator = numerator._numerator
self._denominator = numerator._denominator
return self
elif isinstance(numerator, list):
# Contrcut with continued fraction.
self = super(Fraction, cls).__new__(cls)
# Extract original fraction.
def extract(cfList):
_convergent = []
p_1 = 1; p_2 = 0
q_1 = 0; q_2 = 1
for a_0 in cfList:
p_1, p_2 = p_1 * a_0 + p_2, p_1
q_1, q_2 = q_1 * a_0 + q_2, q_1
_convergent.append(FractionBase(p_1, q_1))
_numerator = p_1; _denominator = q_1
return _convergent, _numerator, _denominator
self._fraction = numerator
self._convergent, self._numerator, self._denominator = extract(self._fraction)
self._number = FractionBase(self._numerator, self._denominator)
return self
else:
self = super(Fraction, cls).__new__(cls, numerator, denominator)
self._number = FractionBase(self._numerator, self._denominator)
self._fraction, self._convergent = expand(self._number)
return self
else:
self = super(Fraction, cls).__new__(cls, numerator, denominator)
self._number = FractionBase(self._numerator, self._denominator)
self._fraction, self._convergent = expand(self._number)
return self
# Get certain level of convergents.
def __getitem__(self, level=None):
int_check(level)
if level is None:
return self._number
else:
int_check()
try:
return self.convergent[level]
except IndexError:
return self._number
##########################################################################
# Algebra.
##########################################################################
def _operator_fallbacks(monomorphic_operator, fallback_operator):
def forward(a, b):
if isinstance(b, (jsint, Fraction)):
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, numbers.Rational):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
def _add(a, b):
return Fraction(a._number + b._number)
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
def _sub(a, b):
return Fraction(a._number - b._number)
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
def _mul(a, b):
return Fraction(a._number * b._number)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
return Fraction(a._number / b._number)
if ispy3:
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
else:
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
__div__, __rdiv__ = _operator_fallbacks(_div, operator.div)
def __floordiv__(a, b):
return Fraction(a._number // b._number)
def __rfloordiv__(b, a):
return Fraction(a._number // b._number)
def __mod__(a, b):
return Fraction(a._number % b._number)
def __rmod__(b, a):
return Fraction(a._number % b._number)
def __pow__(a, b):
return Fraction(a._number ** b._number)
def __rpow__(b, a):
return Fraction(a._number ** b._number)
def __pos__(a):
return Fraction(a._number)
def __neg__(a):
return Fraction(-a._number)
def __abs__(a):
return Fraction(abs(a._number))
def __trunc__(a):
return Fraction(trunc(a))
def __hash__(self):
return Fraction(hash(self._number))
def __floor__(a):
return Fraction(jsfloor(a._number))
def __ceil__(a):
return Fraction(jsceil(a._number))
def __round__(a):
return Fraction(jsround(a._number))
def __eq__(a, b):
return (a._number == b._number)
def __lt__(a, b):
return (a._number < b._number)
def __gt__(a, b):
return (a._number > b._number)
def __le__(a, b):
return (a._number <= b._number)
def __ge__(a, b):
return (a._number >= b._number)
def __nonzero__(a):
return (a._number != 0)