This repository was archived by the owner on Mar 28, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNTLPolynomial.py
751 lines (607 loc) · 24.1 KB
/
NTLPolynomial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
# -*- coding: utf-8 -*-
from .__abc__ import __polynomial__
import copy
# 複數域多項式類
# 具備基本運算的複數域多項式實現
from .NTLExceptions import ComplexError, DefinitionError, ResidueError, PolyError
from .NTLRepetiveSquareModulo import repetiveSquareModulo
from .NTLUtilities import jsappend, jsint, jsitems, jskeys, \
jsmaxint, jsrange, jsupdate, ispy3
from .NTLValidations import int_check, number_check, tuple_check
__all__ = ['Polynomial']
nickname = 'Polynomial'
'''Usage sample:
a = complex(1,3)
poly_1 = Polynomial(('a', (1,3), (3,4), (2,2), (34,a)))
poly_2 = Polynomial((1,0), (4,-4), (2,3), (0,1))
poly_3 = Polynomial(((2,-1), (0,1)))
poly_4 = Polynomial(((0,1)))
poly_5 = Polynomial(
((20140515,20140515), (201405,201495), (2014,2014), (8,8), (6,1), (3,4), (1,1), (0,1)))
poly_6 = Polynomial(((7,1), (1,-1)))
poly_7 = poly_1 / poly_2
print(poly_1[:])
print(poly_2)
print(poly_7)
'''
# Abstract base class of polynomial.
PolyBase = __polynomial__.ABCPolynomial
class Polynomial(PolyBase):
__all__ = ['iscomplex', 'isinteger', 'ismultivar', 'var', 'vector', 'dfvar', 'nickname']
__slots__ = ('_cflag', '_iflag', '_vflag', '_var', '_vec', '_dfvar', '_nickname')
##########################################################################
# Properties.
##########################################################################
@property
def iscomplex(a):
return a._cflag
@property
def isinteger(a):
return a._iflag
@property
def ismultivar(a):
return a._vflag
@property
def var(a):
return a._var
@property
def vector(a):
return a._vec
@property
def dfvar(a):
return a._dfvar
@property
def nickname(a):
return a._nickname
##########################################################################
# Methods.
##########################################################################
# 求取self的值
def eval(self, *vars):
# 生成可計算的多項式
def make_eval(_dict):
poly = []
for exp in _dict:
item = str(_dict[exp]) + '*x**' + str(exp)
poly.append(item)
_eval = ' + '.join(poly)
return _eval
_rst = 0; _var = self._read_vars(*vars)
if _var is None: return 0
if self._var == []: return 0
for var in _var:
poly = make_eval(self._vec[var])
_rst += (lambda x: eval(poly))(_var[var])
return _rst
# 用模重複平方法求self取模後的值
def mod(self, *vars, **mods):
_rst = 0
_mod = self._read_mods(**mods)
if _mod is None: return self.eval(*vars)
_var = self._read_vars(*vars)
if _var is None: return 0
if self._var == []: return 0
for var in _var:
for exp in self._vec[var]:
_coe = self._vec[var][exp] % _mod
base = _var[var]
_tmp = repetiveSquareModulo(base, exp, _mod)
_rst += (_coe * _tmp) % _mod
_rst %= _mod
return _rst
##########################################################################
# Utilities.
##########################################################################
def _update_state(self):
for var in self._var:
for exp in jskeys(self._vec[var]):
if self._vec[var][exp] == 0: del self._vec[var][exp]
if self._none_check(self._vec[var]):
self._var.remove(var); del self._vec[var]
self._var.sort()
self._vflag = True if len(self._var) > 1 else False
for var in self._var:
if self._complex_check(self._vec[var]):
self._cflag = True; break
else:
self._cflag = False
if self._cflag:
self._iflag = False
else:
for var in self._var:
if not self._int_check(self._vec[var]):
self._iflag = False; break
else:
self._iflag = True
self._var = self._var or [self._dfvar]
self._vec = self._vec or {self._dfvar: {0: 0}}
##########################################################################
# Data models.
##########################################################################
def __init__(self, other=None, *items, **kwargs):
self._nickname = 'poly'
self._update_state()
# 返回最高次項的次冪加一
def __len__(self):
if self._vflag:
raise PolyError('Multi-variable polynomial has no len().')
else:
return (max(self._vec[self._var[0]]) + 1)
# 返回key次項的係數或關於key變量的多項式
def __getitem__(self, key):
if isinstance(key, str):
if key in self._var:
vec = {key: self._vec[key]}
item = Polynomial(vec)
item._dfvar = self._dfvar
else:
item = Polynomial()
return item
elif isinstance(key, slice):
return self.__getslice__(key.start, key.stop, key.step)
else:
int_check(key)
if ispy3:
if key < 0: key += len(self)
if self._vflag:
raise PolyError('Multi-variable polynomial has no attribute \'__getitem__\'.')
else:
try:
return self._vec[self._var[0]][key]
except KeyError:
return 0
# 修改key次項的係數或關於key變量的項為value
def __setitem__(self, key, value):
if isinstance(key, str):
tuple_check(value); _ec = {}
for item in value:
tuple_check()
if len(item) != 2:
raise DefinitionError(
'Tuple of coeffients and corresponding exponents in need.')
_ec[item[0]] = item[1]
jsappend(self._var, key)
self._vec[key] = _ec
elif isinstance(key, slice):
self.__setslice__(key.start, key.stop, key.step, value)
else:
int_check(key); number_check(value)
if ispy3:
if key < 0: key += len(self)
if self._vflag:
raise PolyError('Multi-variable polynomial does not support item assignment.')
if key in self._vec[self._var[0]] and value == 0:
del self._vec[self._var[0]][key]
else:
self._vec[self._var[0]][key] = value
self._update_state()
# 刪去key次項
def __delitem__(self, key):
if isinstance(key, str):
if key in self._var:
self._var.remove(key)
del self._vec[key]
elif isinstance(key, slice):
self.__delslice__(key.start, key.stop, key.step)
else:
int_check(key)
if self._vflag:
raise PolyError('Multi-variable polynomial does not support item deletion.')
try:
del self._vec[self._var[0]][key]
except KeyError:
pass
self._update_state()
# 判斷一多項式是否含於多項式中
def __contains__(self, poly):
if isinstance(poly, Polynomial):
if (poly._var in self._var):
for var in poly._var:
for key in poly._vec[var]:
try:
if poly._vec[var][key] == self._vec[var][key]:
continue
else:
return False
except KeyError:
return False
else:
return False
else:
return (Polynomial(poly) in self)
'''
特別注意:
1. 當下標值(key\i&j)小於零時,系統自動調用__len__()函數,並自增轉化為正數下標,即 key += len;
2. 若下標缺省,起始地址模認為0,而終止地址將被模認為最大整型數,即sys.maxint=9223372036854775807。
'''
# 返回i至j-1次項的多項式
def __getslice__(self, i, j, k=None):
if i is None: i = 0
if j is None: j = len(self)
if k is None: k = 1
int_check(i, j, k)
if self._vflag:
raise PolyError('Multi-variable polynomial has no attribute \'__getitem__\'.')
if j == jsmaxint: j = len(self)
_list = [self._var[0]]
for ptr in jsrange(i, j, k):
try:
_list.append((ptr, self._vec[self._var[0]][ptr]))
except KeyError:
pass
poly = Polynomial(tuple(_list))
return poly
# 修改i至j-1次項的多項式
def __setslice__(self, i, j, k, coe=None):
if coe is None:
if i is None: i = 0
if j is None: j = len(self)
int_check(i, j); tuple_check(k)
if self._vflag:
raise PolyError('Multi-variable polynomial does not support item assignment.')
coe = k; j = i + len(coe)
for ptr in jsrange(i, j):
if ptr in self._vec[self._var[0]] and coe[ptr-i] == 0:
del self._vec[self._var[0]][ptr]
else:
self._vec[self._var[0]][ptr] = coe[ptr-i]
self._update_state()
else:
if i is None: i = 0
if j is None: j = len(self)
if k is None: k = 1
int_check(i, j, k); tuple_check(coe)
if self._vflag:
raise PolyError('Multi-variable polynomial does not support item assignment.')
j = i + len(coe) * k; ctr = -1
for ptr in jsrange(i, j, k):
ctr += 1
if ptr in self._vec[self._var[0]] and coe[ctr] == 0:
del self._vec[self._var[0]][ptr]
else:
self._vec[self._var[0]][ptr] = coe[ctr]
self._update_state()
# 刪除i至j-1次項的多項式
def __delslice__(self, i, j, k=None):
if i is None: i = 0
if j is None: j = len(self)
if k is None: k = 1
int_check(i, j, k)
if self._vflag:
raise PolyError('Multi-variable polynomial does not support item deletion.')
if j == jsmaxint: j = len(self)
for ptr in range(i, j, k):
try:
del self._vec[self._var[0]][ptr]
except KeyError:
pass
self._update_state()
##########################################################################
# Algebra.
##########################################################################
# 求取_sum = self + poly
def _add(self, poly):
if isinstance(poly, Polynomial):
_sum = copy.deepcopy(self)
_sum._var = jsappend(_sum._var, poly._var)
_sum._vec = jsupdate(self._vec, poly._vec)
_sum._update_state()
else:
_sum = self + Polynomial(poly)
return _sum
# 求取rsum = poly + self
def radd(self, poly):
rsum = poly + self
return rsum
__add__ = _add
__radd__ = radd
# 求取_dif = self - poly
def _sub(self, poly):
if isinstance(poly, Polynomial):
_dif = copy.deepcopy(self); _poly = -poly
_dif._var = jsappend(_dif._var, poly._var)
_dif._vec = jsupdate(self._vec, _poly._vec)
_dif._update_state()
else:
_dif = self - Polynomial(poly)
return _dif
# 求取rdif = poly - self
def rsub(self, poly):
rdif = poly - self
return rdif
__sub__ = _sub
__rsub__ = rsub
# 求取_pro = self * poly
def _mul(self, poly):
if isinstance(poly, Polynomial):
if self._vflag:
raise PolyError('Multi-variable polynomial does not support multiplication.')
else:
if self._var == poly._var:
_pro = copy.deepcopy(self)
vec = {}; _ec = {}
for exp_a in self._vec[self._var[0]]:
for exp_b in poly._vec[poly._var[0]]:
exp = exp_a + exp_b
coe = self._vec[self._var[0]][exp_a] * poly._vec[poly._var[0]][exp_b]
_ec[exp] = coe
vec[self._var[0]] = _ec
_pro = Polynomial(vec)
else:
raise PolyError('No support for multi-variable multiplication.')
else:
_pro = self * Polynomial(poly)
return _pro
# 求取rpro = poly * self
def rmul(self, poly):
rpro = poly * self
return rpro
__mul__ = _mul
__rmul__ = rmul
# 求取_quo = self / poly
def _div(self, poly):
if poly == 1:
return self
if poly == 0:
raise ResidueError('integer division or modulo by zero')
if ispy3 and self._iflag and poly._iflag:
_quo = self // poly
return _quo
if isinstance(poly, Polynomial):
if self._vflag:
raise PolyError('Multi-variable polynomial does not support division.')
else:
if self._var == poly._var:
_var = self._var[0]; _vec = {_var: {}}
_did = copy.deepcopy(poly)
_rem = copy.deepcopy(self)
# 獲取被除式的最高次數
a_expmax = max(self._vec[_var])
# 獲取除式的指數列(降序)
b_exp = sorted(jskeys(_did._vec[_var]), reverse=True)
# 若被除式最高次冪小於除式最高次冪則終止迭代
while a_expmax >= b_exp[0]:
# 計算商式的係數,即當前被除式最高次冪項係數與除式最高次冪的項係數的商值
quo_coe = _rem._vec[_var][a_expmax] / _did._vec[_var][b_exp[0]]
# 計算商式的次冪,即當前被除式最高次冪與除式最高次冪的差值
quo_exp = a_expmax - b_exp[0]
# 將結果添入商式多項式
_vec[_var][quo_exp] = quo_coe
# 更新被除式係數及次冪狀態
for exp in b_exp:
rem_exp = exp + quo_exp
rem_coe = _did._vec[_var][exp] * quo_coe
try:
_rem._vec[_var][rem_exp] -= rem_coe
except KeyError:
_rem._vec[_var][rem_exp] = -rem_coe
_rem._update_state()
# 更新被除式的最高次數
try:
a_expmax = max(_rem._vec[_var])
except ValueError:
break
_quo = Polynomial(_vec)
return _quo
else:
raise PolyError('No support for multi-variable division.')
else:
_quo = self / Polynomial(poly)
return _quo
# 求取rquo = poly / self
def rdiv(self, poly):
rquo = poly / self
return rquo
__truediv__ = _div
__rtruediv__ = rdiv
if not ispy3:
__div__ = _div
__rdiv__ = rdiv
# 求取(_quo, _rem) = divmod(self, poly)
def _divmod(self, poly):
if isinstance(poly, Polynomial):
if self._vflag:
raise PolyError('Multi-variable polynomial does not support division & modulo.')
else:
if poly == 1:
return self, 0
if poly == 0:
raise ResidueError('integer division or modulo by zero')
if self._var == poly._var:
_var = self._var[0]; _vec = {_var: {}}
_did = copy.deepcopy(poly)
_rem = copy.deepcopy(self)
# 獲取被除式的最高次數
a_expmax = max(self._vec[_var])
# 獲取除式的指數列(降序)
b_exp = sorted(jskeys(_did._vec[_var]), reverse=True)
# 若除式最高次冪的係數不為1,則需化簡
if _did._vec[_var][b_exp[0]] != 1:
_coe = _did._vec[_var][b_exp[0]]
if self._vec[_var][a_expmax] % _coe == 0:
_mul = self._vec[_var][a_expmax] // _coe
if self == _did * _mul:
_quo = Polynomial(_mul)
_rem = Polynomial()
return _quo, _rem
# 判斷除式是否可化簡
for exp in b_exp:
if _did._vec[_var][exp] % _coe != 0:
_quo = Polynomial()
_rem = copy.deepcopy(self)
return _quo, _rem
else:
_did._vec[_var][exp] //= _coe
# 判斷被除式是否可化簡
for key in self._vec[_var]:
if self._vec[_var][key] % _coe != 0:
_quo = Polynomial()
_rem = copy.deepcopy(self)
return _quo, _rem
else:
_rem._vec[_var][key] //= _coe
# 若被除式最高次冪小於除式最高次冪則終止迭代
while a_expmax >= b_exp[0]:
# 計算商式的係數,即當前被除式最高次冪項係數
quo_coe = _rem._vec[_var][a_expmax]
# 計算商式的次冪,即當前被除式最高次冪與除式最高次冪的差值
quo_exp = a_expmax - b_exp[0]
# 將結果添入商式多項式
_vec[_var][quo_exp] = quo_coe
# 更新被除式係數及次冪狀態
for exp in b_exp:
rem_exp = exp + quo_exp
rem_coe = _did._vec[_var][exp] * quo_coe
try:
_rem._vec[_var][rem_exp] -= rem_coe
except KeyError:
_rem._vec[_var][rem_exp] = -rem_coe
_rem._update_state()
# 更新被除式的最高次數
try:
a_expmax = max(_rem._vec[_var])
except (ValueError, KeyError):
break
_quo = Polynomial(_vec)
return _quo, _rem
else:
raise PolyError('No support for multi-variable division & modulo.')
else:
_quo, _rem = self._divmod(Polynomial(poly))
return _quo, _rem
# 求取(_quo, _rem) = divmod(poly, self)
def rdivmod(self, poly):
(_quo, _rem) = divmod(poly, self)
return _quo, _rem
__divmod__ = _divmod
__rdivmod__ = rdivmod
# 求取_quo = self // poly
def _floordiv(self, poly):
_quo = self._divmod(poly)[0]
return _quo
# 求取rquo = poly // self
def rfloordiv(self, poly):
rquo = poly // self
return rquo
__floordiv__ = _floordiv
__rfloordiv__ = rfloordiv
# 求取_rem = self % poly
def _mod(self, poly):
_rem = self._divmod(poly)[1]
return _rem
# 求取rrem = poly % self
def rmod(self, poly):
rrem = poly % self
return rrem
__mod__ = _mod
__rmod__ = rmod
# 求取_pow = pow(self, exp[, mod])
def _pow(self, exp, mod=None):
int_check(exp); _pow = copy.deepcopy(self)
for ctr in jsrange(1, exp): _pow *= _pow
if mod is not None: int_check(mod); _pow %= _mod
return _pow
__pow__ = _pow
# 求取_neg = -self
def _neg(self):
_neg = copy.deepcopy(self)
for var in _neg._vec:
for exp in _neg._vec[var]:
_neg._vec[var][exp] = -_neg._vec[var][exp]
return _neg
# 求取_pos = +self
def _pos(self):
_pos = copy.deepcopy(self)
return _pos
# 求取_abs = abs(self)
def _abs(self):
_abs = copy.deepcopy(self)
for var in _abs._vec:
for exp in _abs._vec[var]:
_neg._vec[var][exp] = abs(_neg._vec[var][exp])
return _abs
__neg__ = _neg
__pos__ = _pos
__abs__ = _abs
# 求取self的導式
def _der(self):
vec = {}; _ec = {}
for var in self._vec:
for exp in self._vec[var]:
if exp:
_exp = exp - 1
_coe = self._vec[var][exp] * exp
else:
_exp = 0; _coe = 0
_ec[_exp] = _coe
vec[var] = _ec
_der = Polynomial(vec)
return _der
# 求取self的積分
def _int(self):
vec = {}; _ec = {}
for var in self._vec:
for exp in self._vec[var]:
_exp = exp + 1
if exp:
if ispy3:
_coe = self._vec[var][exp] / key
else:
_coe = 1.0 * self._vec[var][exp] / key
else:
_coe = self._vec[var][exp]
_ec[_exp] = [_coe]
vec[var] = _ec
_int = Polynomial(vec)
return _int
polyder = _der
polyint = _int
# 返回self=poly的布爾值
def __eq__(self, other):
if isinstance(other, Polynomial):
return (self._var == other._var and self._vec == other._vec)
else:
return (self == Polynomial(other))
# 返回self≠poly的布爾值
def __ne__(self, poly):
return (not (self == poly))
# 返回self<poly的布爾值
def __lt__(self, poly):
if self.has_sametype(poly):
if self._cflag or poly._cflag:
raise ComplexError('No ordering relation is defined for complex polynomial.')
if self._vflag or poly._vflag:
raise PolyError('No ordering relation is defined for multi-variable polynomial.')
if len(self) > len(poly): return False
if len(self) < len(poly): return True
a_ec = self._vec[self._var[0]]
b_ec = poly._vec[poly._var[0]]
for ptr in jsrange(len(self), -1, -1):
try:
if ptr in a_ec and ptr not in b_ec: return False
if a_ec[ptr] > b_ec[ptr]: return False
except KeyError:
continue
return True
else:
return (self < Polynomial(poly))
# 返回self≤poly的布爾值
def __le__(self, poly):
return ((self == poly) or (self < poly))
# 返回self>poly的布爾值
def __gt__(self, poly):
return (not (self <= poly))
# 返回self≥poly的布爾值
def __ge__(self, poly):
return (not (self < poly))
# support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
def __copy__(self):
if type(self) == Polynomial:
return self # I'm immutable; therefore I am my own clone
return self.__class__(self._vec, dfvar=self._dfvar)
def __deepcopy__(self, memo):
if type(self) == Polynomial:
return self # My components are also immutable
return self.__class__(self._vec, dfvar=self._dfvar)