Skip to content

Traditional image process for Finger vein recognition/matching using python & opencv

Notifications You must be signed in to change notification settings

JasmineCAicai/Finger-Vein-Recognition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Finger-Vein-Recognition

Background

My personal project for the final assignment of Class Machine Vision Application in SCUT.

Requirements

  • opencv-python
  • opencv-contrib-python <= 3.4.0.10 (for SIFT & SURF algorithem can be used.)
  • numpy
  • matplotlib

Descriptions

Here is the structure of the whole system:

系统结构图

We use the traditional ways to process the images, rather than the deep-learning methods.

After your running vein_main.py, you should see the histogram of the scores between inter-class and in-class.

特征匹配得分直方图

So we can set the threshold value to 60 for classification.

Usage

python vein_main.py

Besides, you should dive into the file vein_main.py, and adjust the comments for many other usages.

Data preparation

I didn' t upload all of my own vein data for individual privacy.
You should place your own vein data in the ./data/600/2 folder and name it like the format below.

├──data  
│   ├── 600                        // A Person's vein image  
│   │   ├── 1                      // the first machine  
│   │   ├── 2                      // the second machine   
│   │   │   ├── 600-1-1-1.bmp  
│   │   │   ├── 600-1-2-1.bmp  
│   │   │   ├── 600-1-3-1.bmp  
│   │   │   ├── ...  
│   │   │   ├── 600-2-1-1.bmp  
│   │   │   ├── 600-2-2-1.bmp  
│   │   │   ├── 600-2-3-1.bmp  
│   │   │   ├── ...  
│   ├── roi_600_2_all_320240       //saved ROI  
│   │   ├── 600-1-1-1.bmp  
│   │   ├── 600-1-2-1.bmp  
│   │   ├── 600-1-3-1.bmp  
│   │   ├── ...   

License

The MIT License (MIT)
Copyright © 2020 https://github.com/Qingcsai

About

Traditional image process for Finger vein recognition/matching using python & opencv

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%