Skip to content

Commit

Permalink
[SPARK-18291][SPARKR][ML] SparkR glm predict should output original l…
Browse files Browse the repository at this point in the history
…abel when family = binomial.

## What changes were proposed in this pull request?
SparkR ```spark.glm``` predict should output original label when family = "binomial".

## How was this patch tested?
Add unit test.
You can also run the following code to test:
```R
training <- suppressWarnings(createDataFrame(iris))
training <- training[training$Species %in% c("versicolor", "virginica"), ]
model <- spark.glm(training, Species ~ Sepal_Length + Sepal_Width,family = binomial(link = "logit"))
showDF(predict(model, training))
```
Before this change:
```
+------------+-----------+------------+-----------+----------+-----+-------------------+
|Sepal_Length|Sepal_Width|Petal_Length|Petal_Width|   Species|label|         prediction|
+------------+-----------+------------+-----------+----------+-----+-------------------+
|         7.0|        3.2|         4.7|        1.4|versicolor|  0.0| 0.8271421517601544|
|         6.4|        3.2|         4.5|        1.5|versicolor|  0.0| 0.6044595910413112|
|         6.9|        3.1|         4.9|        1.5|versicolor|  0.0| 0.7916340858281998|
|         5.5|        2.3|         4.0|        1.3|versicolor|  0.0|0.16080518180591158|
|         6.5|        2.8|         4.6|        1.5|versicolor|  0.0| 0.6112229217050189|
|         5.7|        2.8|         4.5|        1.3|versicolor|  0.0| 0.2555087295500885|
|         6.3|        3.3|         4.7|        1.6|versicolor|  0.0| 0.5681507664364834|
|         4.9|        2.4|         3.3|        1.0|versicolor|  0.0|0.05990570219972002|
|         6.6|        2.9|         4.6|        1.3|versicolor|  0.0| 0.6644434078306246|
|         5.2|        2.7|         3.9|        1.4|versicolor|  0.0|0.11293577405862379|
|         5.0|        2.0|         3.5|        1.0|versicolor|  0.0|0.06152372321585971|
|         5.9|        3.0|         4.2|        1.5|versicolor|  0.0|0.35250697207602555|
|         6.0|        2.2|         4.0|        1.0|versicolor|  0.0|0.32267018290814303|
|         6.1|        2.9|         4.7|        1.4|versicolor|  0.0|  0.433391153814592|
|         5.6|        2.9|         3.6|        1.3|versicolor|  0.0| 0.2280744262436993|
|         6.7|        3.1|         4.4|        1.4|versicolor|  0.0| 0.7219848389339459|
|         5.6|        3.0|         4.5|        1.5|versicolor|  0.0|0.23527698971404695|
|         5.8|        2.7|         4.1|        1.0|versicolor|  0.0|  0.285024533520016|
|         6.2|        2.2|         4.5|        1.5|versicolor|  0.0| 0.4107047877447493|
|         5.6|        2.5|         3.9|        1.1|versicolor|  0.0|0.20083561961645083|
+------------+-----------+------------+-----------+----------+-----+-------------------+
```
After this change:
```
+------------+-----------+------------+-----------+----------+-----+----------+
|Sepal_Length|Sepal_Width|Petal_Length|Petal_Width|   Species|label|prediction|
+------------+-----------+------------+-----------+----------+-----+----------+
|         7.0|        3.2|         4.7|        1.4|versicolor|  0.0| virginica|
|         6.4|        3.2|         4.5|        1.5|versicolor|  0.0| virginica|
|         6.9|        3.1|         4.9|        1.5|versicolor|  0.0| virginica|
|         5.5|        2.3|         4.0|        1.3|versicolor|  0.0|versicolor|
|         6.5|        2.8|         4.6|        1.5|versicolor|  0.0| virginica|
|         5.7|        2.8|         4.5|        1.3|versicolor|  0.0|versicolor|
|         6.3|        3.3|         4.7|        1.6|versicolor|  0.0| virginica|
|         4.9|        2.4|         3.3|        1.0|versicolor|  0.0|versicolor|
|         6.6|        2.9|         4.6|        1.3|versicolor|  0.0| virginica|
|         5.2|        2.7|         3.9|        1.4|versicolor|  0.0|versicolor|
|         5.0|        2.0|         3.5|        1.0|versicolor|  0.0|versicolor|
|         5.9|        3.0|         4.2|        1.5|versicolor|  0.0|versicolor|
|         6.0|        2.2|         4.0|        1.0|versicolor|  0.0|versicolor|
|         6.1|        2.9|         4.7|        1.4|versicolor|  0.0|versicolor|
|         5.6|        2.9|         3.6|        1.3|versicolor|  0.0|versicolor|
|         6.7|        3.1|         4.4|        1.4|versicolor|  0.0| virginica|
|         5.6|        3.0|         4.5|        1.5|versicolor|  0.0|versicolor|
|         5.8|        2.7|         4.1|        1.0|versicolor|  0.0|versicolor|
|         6.2|        2.2|         4.5|        1.5|versicolor|  0.0|versicolor|
|         5.6|        2.5|         3.9|        1.1|versicolor|  0.0|versicolor|
+------------+-----------+------------+-----------+----------+-----+----------+
```

Author: Yanbo Liang <[email protected]>

Closes apache#15788 from yanboliang/spark-18291.
  • Loading branch information
yanboliang committed Nov 7, 2016
1 parent a814eea commit daa975f
Show file tree
Hide file tree
Showing 2 changed files with 84 additions and 13 deletions.
20 changes: 15 additions & 5 deletions R/pkg/inst/tests/testthat/test_mllib.R
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,16 @@ test_that("spark.glm and predict", {
rVals <- predict(glm(Sepal.Width ~ Sepal.Length + Species, data = iris), iris)
expect_true(all(abs(rVals - vals) < 1e-6), rVals - vals)

# binomial family
binomialTraining <- training[training$Species %in% c("versicolor", "virginica"), ]
model <- spark.glm(binomialTraining, Species ~ Sepal_Length + Sepal_Width,
family = binomial(link = "logit"))
prediction <- predict(model, binomialTraining)
expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "character")
expected <- c("virginica", "virginica", "virginica", "versicolor", "virginica",
"versicolor", "virginica", "versicolor", "virginica", "versicolor")
expect_equal(as.list(take(select(prediction, "prediction"), 10))[[1]], expected)

# poisson family
model <- spark.glm(training, Sepal_Width ~ Sepal_Length + Species,
family = poisson(link = identity))
Expand Down Expand Up @@ -128,10 +138,10 @@ test_that("spark.glm summary", {
expect_equal(stats$aic, rStats$aic)

# Test spark.glm works with weighted dataset
a1 <- c(0, 1, 2, 3)
a2 <- c(5, 2, 1, 3)
w <- c(1, 2, 3, 4)
b <- c(1, 0, 1, 0)
a1 <- c(0, 1, 2, 3, 4)
a2 <- c(5, 2, 1, 3, 2)
w <- c(1, 2, 3, 4, 5)
b <- c(1, 0, 1, 0, 0)
data <- as.data.frame(cbind(a1, a2, w, b))
df <- createDataFrame(data)

Expand All @@ -158,7 +168,7 @@ test_that("spark.glm summary", {
data <- as.data.frame(cbind(a1, a2, b))
df <- suppressWarnings(createDataFrame(data))
regStats <- summary(spark.glm(df, b ~ a1 + a2, regParam = 1.0))
expect_equal(regStats$aic, 13.32836, tolerance = 1e-4) # 13.32836 is from summary() result
expect_equal(regStats$aic, 14.00976, tolerance = 1e-4) # 14.00976 is from summary() result
})

test_that("spark.glm save/load", {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,11 +23,16 @@ import org.json4s.JsonDSL._
import org.json4s.jackson.JsonMethods._

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.attribute.AttributeGroup
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NominalAttribute}
import org.apache.spark.ml.feature.{IndexToString, RFormula}
import org.apache.spark.ml.regression._
import org.apache.spark.ml.Transformer
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util._
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._

private[r] class GeneralizedLinearRegressionWrapper private (
val pipeline: PipelineModel,
Expand All @@ -42,6 +47,8 @@ private[r] class GeneralizedLinearRegressionWrapper private (
val rNumIterations: Int,
val isLoaded: Boolean = false) extends MLWritable {

import GeneralizedLinearRegressionWrapper._

private val glm: GeneralizedLinearRegressionModel =
pipeline.stages(1).asInstanceOf[GeneralizedLinearRegressionModel]

Expand All @@ -52,7 +59,15 @@ private[r] class GeneralizedLinearRegressionWrapper private (
def residuals(residualsType: String): DataFrame = glm.summary.residuals(residualsType)

def transform(dataset: Dataset[_]): DataFrame = {
pipeline.transform(dataset).drop(glm.getFeaturesCol)
if (rFamily == "binomial") {
pipeline.transform(dataset)
.drop(PREDICTED_LABEL_PROB_COL)
.drop(PREDICTED_LABEL_INDEX_COL)
.drop(glm.getFeaturesCol)
} else {
pipeline.transform(dataset)
.drop(glm.getFeaturesCol)
}
}

override def write: MLWriter =
Expand All @@ -62,6 +77,10 @@ private[r] class GeneralizedLinearRegressionWrapper private (
private[r] object GeneralizedLinearRegressionWrapper
extends MLReadable[GeneralizedLinearRegressionWrapper] {

val PREDICTED_LABEL_PROB_COL = "pred_label_prob"
val PREDICTED_LABEL_INDEX_COL = "pred_label_idx"
val PREDICTED_LABEL_COL = "prediction"

def fit(
formula: String,
data: DataFrame,
Expand All @@ -71,8 +90,8 @@ private[r] object GeneralizedLinearRegressionWrapper
maxIter: Int,
weightCol: String,
regParam: Double): GeneralizedLinearRegressionWrapper = {
val rFormula = new RFormula()
.setFormula(formula)
val rFormula = new RFormula().setFormula(formula)
if (family == "binomial") rFormula.setForceIndexLabel(true)
RWrapperUtils.checkDataColumns(rFormula, data)
val rFormulaModel = rFormula.fit(data)
// get labels and feature names from output schema
Expand All @@ -90,9 +109,27 @@ private[r] object GeneralizedLinearRegressionWrapper
.setWeightCol(weightCol)
.setRegParam(regParam)
.setFeaturesCol(rFormula.getFeaturesCol)
val pipeline = new Pipeline()
.setStages(Array(rFormulaModel, glr))
.fit(data)
val pipeline = if (family == "binomial") {
// Convert prediction from probability to label index.
val probToPred = new ProbabilityToPrediction()
.setInputCol(PREDICTED_LABEL_PROB_COL)
.setOutputCol(PREDICTED_LABEL_INDEX_COL)
// Convert prediction from label index to original label.
val labelAttr = Attribute.fromStructField(schema(rFormulaModel.getLabelCol))
.asInstanceOf[NominalAttribute]
val labels = labelAttr.values.get
val idxToStr = new IndexToString()
.setInputCol(PREDICTED_LABEL_INDEX_COL)
.setOutputCol(PREDICTED_LABEL_COL)
.setLabels(labels)

new Pipeline()
.setStages(Array(rFormulaModel, glr.setPredictionCol(PREDICTED_LABEL_PROB_COL),
probToPred, idxToStr))
.fit(data)
} else {
new Pipeline().setStages(Array(rFormulaModel, glr)).fit(data)
}

val glm: GeneralizedLinearRegressionModel =
pipeline.stages(1).asInstanceOf[GeneralizedLinearRegressionModel]
Expand Down Expand Up @@ -200,3 +237,27 @@ private[r] object GeneralizedLinearRegressionWrapper
}
}
}

/**
* This utility transformer converts the predicted value of GeneralizedLinearRegressionModel
* with "binomial" family from probability to prediction according to threshold 0.5.
*/
private[r] class ProbabilityToPrediction private[r] (override val uid: String)
extends Transformer with HasInputCol with HasOutputCol with DefaultParamsWritable {

def this() = this(Identifiable.randomUID("probToPred"))

def setInputCol(value: String): this.type = set(inputCol, value)

def setOutputCol(value: String): this.type = set(outputCol, value)

override def transformSchema(schema: StructType): StructType = {
StructType(schema.fields :+ StructField($(outputCol), DoubleType))
}

override def transform(dataset: Dataset[_]): DataFrame = {
dataset.withColumn($(outputCol), round(col($(inputCol))))
}

override def copy(extra: ParamMap): ProbabilityToPrediction = defaultCopy(extra)
}

0 comments on commit daa975f

Please sign in to comment.