This repository contains a comprehensive survival analysis project focusing on mortality prediction and waitlist analysis in healthcare. The project utilizes various machine learning techniques, including CatBoost, XGBoost, and Random Forest models, to analyze and predict patient outcomes.
graph LR
A[survival_analysis] --> B[final_model]
B --> B1[survival_analysis_final_catboost_model.qmd]
B --> B2[survival_analysis_final_catboost_model.html]
B --> B3[stratified_risk_metrics.csv]
B --> B4[sorted_shap_values_interactive.html]
B --> C[images]
C --> C1[catboost_beeswarm.png]
C --> C2[mean_absolute_shap_importance.png]
C --> C3[partial_dependence_plots_test]
C --> C4[partial_dependence_plots_train]
C --> C5[shap_correlation_plot.png]
C --> C6[shapley_bar_one_hot.png]
A --> D[tripod_ai_checklist]
D --> D1[tripod_ai_checklistt.qmd]
D --> D2[tripod_ai_checklist.html]
A --> E[utilities]
E --> E1[make.R]
E --> E2[plotting.R]
A --> F[model_data]
F --> F1[center-stats.qmd]
F --> F2[center-stats.html]
F --> F3[model_data.qmd]
F --> F4[model_data.html]
F --> F5[waitlist-data2.qmd]
F --> F6[waitlist-data2.html]
A --> G[eda]
G --> G1[listing-mortality-prediction.qmd]
G --> G2[listing-mortality-prediction.html]
G --> G3[survival_analysis_catboost_xgboost_random_forest.qmd]
G --> G4[survival_analysis_feature_analysis.qmd]
G --> G5[survival_analysis_feature_encoding.qmd]
G --> G6[survival_analysis_model_evaluation.qmd]
G --> G7[survival_analysis_models.qmd]
The final_model/
directory contains- survival_analysis_final_catboost_model.qmd
: The final CatBoost model for survival analysis.
survival_analysis_final_catboost_model.qmd
The shap_values/
directory contains an Interactive Feature Importance Plot
The images/
directory stores generated plots and figures:
- CatBoost beeswarm plot
- Mean absolute SHAP importance
- Partial dependence plots - Test and Train
- SHAP correlation plot
- Shapley bar plot (one-hot encoded)
The tripod_ai_checklist/
directory contains the completed TRIPOD+AI Checklist.
The model_data/
directory contains the data pre-processing and processing used in the analysis.
The data/
directory contains the data sets used in the analysis.
Available upon request.
The eda/
directory contains various aspects of the analysis:
- Center statistics
- Listing mortality prediction
- Comparison of CatBoost, XGBoost, and Random Forest models
- Feature analysis and encoding
- Model evaluation
- Waitlist data analysis
The utilities/
directory contains R scripts for common functions:
plotting.R
: Custom plotting functions for the project- 'make.R': Orchestration file for data pipelines
To reproduce the analysis:
- Ensure you have R and the required packages installed.
- Request the data files and place in /data directory.
- Run
survival_analysis_final_catboost_model.qmd
.