-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodules.py
87 lines (71 loc) · 2.73 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import tensorflow as tf
from tensorpack import *
from cfgs.config import cfg
# @layer_register(log_shape=True)
def VGGBlock_official(l):
with argscope(Conv2D, kernel_shape=3, nl=tf.nn.relu):
l = (LinearWrap(l)
.Conv2D('conv1_1', 64)
.Conv2D('conv1_2', 64)
.MaxPooling('pool1', 2)
.Conv2D('conv2_1', 128)
.Conv2D('conv2_2', 128)
.MaxPooling('pool2', 2)
.Conv2D('conv3_1', 256)
.Conv2D('conv3_2', 256)
.Conv2D('conv3_3', 256)
.Conv2D('conv3_4', 256)
.MaxPooling('pool3', 2)
.Conv2D('conv4_1', 512)
.Conv2D('conv4_2', 512)
.Conv2D('conv4_3_cpm', 256)
.Conv2D('conv4_4_cpm', 128)())
return l
# @layer_register(log_shape=True)
def VGGBlock_ours(l):
with argscope(Conv2D, kernel_shape=3, nl=tf.nn.relu):
l = (LinearWrap(l)
.Conv2D('conv1_1', 64)
.Conv2D('conv1_2', 64)
.MaxPooling('pool1', 2)
.Conv2D('conv2_1', 128)
.Conv2D('conv2_2', 128)
.MaxPooling('pool2', 2)
.Conv2D('conv3_1', 256)
.Conv2D('conv3_2', 256)
.Conv2D('conv3_3', 256)
.MaxPooling('pool3', 2)
.Conv2D('conv4_1', 512)
.Conv2D('conv4_2', 512)
.Conv2D('conv4_3', 512)())
return l
@layer_register(log_shape=True)
def Stage1Block(l, branch):
assert branch in [1, 2]
ch_out = cfg.ch_heats if branch == 1 else cfg.ch_vectors
with tf.variable_scope('branch_%d' % branch):
with argscope(Conv2D, W_init=tf.random_normal_initializer(stddev=0.01), nl=tf.nn.relu):
l = (LinearWrap(l)
.Conv2D('conv1', 128, 3)
.Conv2D('conv2', 128, 3)
.Conv2D('conv3', 128, 3)
.Conv2D('conv4', 512, 1)
# .Conv2D('conv5', ch_out, 1)())
.Conv2D('conv5', ch_out, 1, nl=tf.identity)())
return l
@layer_register(log_shape=True)
def StageTBlock(l, branch):
assert branch in [1, 2]
ch_out = cfg.ch_heats if branch == 1 else cfg.ch_vectors
with tf.variable_scope('branch_%d' % branch):
with argscope(Conv2D, W_init=tf.random_normal_initializer(stddev=0.01), nl=tf.nn.relu):
l = (LinearWrap(l)
.Conv2D('conv1', 128, 7)
.Conv2D('conv2', 128, 7)
.Conv2D('conv3', 128, 7)
.Conv2D('conv4', 128, 7)
.Conv2D('conv5', 128, 7)
.Conv2D('conv6', 128, 1)
# .Conv2D('conv7', ch_out, 1)())
.Conv2D('conv7', ch_out, 1, nl=tf.identity)())
return l