git clone https://github.com/JianfeiJ/DI-MVS.git
cd DI-MVS
conda create -n di-mvs python=3.8
conda activate di-mvs
pip install -r requirements.txt
- Download pre-processed datasets for test: dtu.
- dtu/ - scan1 (scene_name1) - scan2 (scene_name2) - images - 00000000.jpg - 00000001.jpg - ... - cams_1 - 00000000_cam.txt - 00000001_cam.txt - ... - pair.txt
- Download pre-processed datasets for training: dtu_training, Depth_raw.
- dtu_training/ - Cameras - Depths - Depths_raw - Rectified
Download Tanks & Temples test dataset.
- tanksandtemples_1/
- advanced
- ...
- Temple
- cams
- images
- pair.txt
- Temple.log
- intermediate
- ...
- Train
- cams
- cams_train
- images
- pair.txt
- Train.log
Download pretrained model on DTU and BlendedMVS, and remove them to the checkppints folder.
sh test_dtu.sh
For quantitative evaluation on DTU dataset, download SampleSet and Points. Unzip them and place Points folder in SampleSet/MVS Data/.
- SampleSet
- MVS Data
- ObsMask
- Points
sh test_tnt.sh
Methods | Acc. (mm) | Comp. (mm) | Overall (mm) | Time (s) |
---|---|---|---|---|
DI-MVS-lite | 0.305 | 0.305 | 0.305 | 0.11 |
DI-MVS | 0.312 | 0.278 | 0.295 | 0.30 |
Result on Tanks & Temples benchmark.
Intermediate | Advanced |
---|---|
62.94 | 40.92 |
sh train.sh
This repository is partly based on Effi-MVS, TransMVSNet, IterMVS, UniMVSNet and MVSTER. Thanks for their excellent works!