Skip to content

Joanhxq/CycleGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

This is a PyTorch implementation of the Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

Dataset

You can find CycleGAN datasets from this, and chose what kind of dataset you want to download.

To train a model on your own datasets, you need to create a data folder as the following (apple2orange is dataset name).

apple2orange/
	train/
		X/...jpg
		Y/...jpg
	test/
		X/...jpg
		Y/...jpg

Usage

python cyclegan.py ARGS

Possible ARGS are:

  • --img_size size of image, default is 128;
  • --batch_size size of minibatch, default is 8;
  • --dataset_name name of the dataset, default is 'apple2orange';
  • --n_residual_blocks number of residual blocks in the generator, default is 6;
  • --max_epoch numbers of epoch to train, default is 200;
  • --lr the learning rate of Adam, default is 0.0002;
  • --decay_start_epoch start of epoch to decay lr, default is 100;
  • --sample_interval interval between saving generator outputs, default is 100;
  • --checkpoint_interval interval between saving models, default is 100;
  • --save_images directory of saving generator outputs, default is 'images';
  • --save_models directory of saving models, default is 'save_models'.

An example:

python cyclegan.py --dataset_name "apple2orange"

Result

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages